Search results
Results from the WOW.Com Content Network
The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .
In the state-transition table, all possible inputs to the finite-state machine are enumerated across the columns of the table, while all possible states are enumerated across the rows. If the machine is in the state S 1 (the first row) and receives an input of 1 (second column), the machine will stay in the state S 1.
According to the figure, a bull week is followed by another bull week 90% of the time, a bear week 7.5% of the time, and a stagnant week the other 2.5% of the time. Labeling the state space {1 = bull, 2 = bear, 3 = stagnant} the transition matrix for this example is
In mathematics, a stochastic matrix is a square matrix used to describe the transitions of a Markov chain. Each of its entries is a nonnegative real number representing a probability. [1] [2]: 10 It is also called a probability matrix, transition matrix, substitution matrix, or Markov matrix.
The fundamental matrix is used to express the state-transition matrix, an essential component in the solution of a system of linear ordinary differential equations. [3]
For this example, the Kalman filter can be thought of as operating in two distinct phases: predict and update. In the prediction phase, the truck's old position will be modified according to the physical laws of motion (the dynamic or "state transition" model). Not only will a new position estimate be calculated, but also a new covariance will ...
State transition matrix — exponent of state matrix in control systems. Substitution matrix — a matrix from bioinformatics, which describes mutation rates of amino acid or DNA sequences. Supnick matrix — a square matrix used in computer science. Z-matrix — a matrix in chemistry, representing a molecule in terms of its relative atomic ...
A basic property about an absorbing Markov chain is the expected number of visits to a transient state j starting from a transient state i (before being absorbed). This can be established to be given by the (i, j) entry of so-called fundamental matrix N, obtained by summing Q k for all k (from 0 to ∞).