Search results
Results from the WOW.Com Content Network
Axial loading is defined as applying a force on a structure directly along a given axis of said structure. [1] In the medical field, the term refers to the application of weight or force along the course of the long axis of the body. [2] The application of an axial load on the human spine can result in vertebral compression fractures. [3]
Loads imposed on structures are supported by means of forces transmitted through structural elements. These forces can manifest themselves as tension (axial force), compression (axial force), shear, and bending, or flexure (a bending moment is a force multiplied by a distance, or lever arm, hence producing a turning effect or torque).
A structural load or structural action is a mechanical load (more generally a force) applied to structural elements. [1] [2] A load causes stress, deformation, displacement or acceleration in a structure. Structural analysis, a discipline in engineering, analyzes the effects of loads on structures and structural elements.
An influence line for a given function, such as a reaction, axial force, shear force, or bending moment, is a graph that shows the variation of that function at any given point on a structure due to the application of a unit load at any point on the structure. An influence line for a function differs from a shear, axial, or bending moment diagram.
Mechanical load is the physical stress on a mechanical system or component [1] leading to strain. Loads can be static or dynamic. Some loads are specified as part of the design criteria of a mechanical system. Depending on the usage, some mechanical loads can be measured by an appropriate test method in a laboratory or in the field.
For a helicopter that is hovering, the aerodynamic force is vertical and exactly balances the helicopter weight, with no lateral force. The downward force on the air flowing through the rotor is accompanied by an upward force on the helicopter rotor disk. The downward force produces a downward acceleration of the air, increasing its kinetic energy.
The most common usage is to describe the load applied to a fastener as a result of its being installed, i.e., before any external loads are applied (e.g., tightening the nut on a bolt). Preload in such cases is important for several reasons.
When the axial load over the critical load is plotted against the displacement, the fundamental path is shown. It demonstrates the plate's similarity to a column under buckling; however, past the buckling load, the fundamental path bifurcates into a secondary path that curves upward, providing the ability to be subjected to higher loads past ...