Search results
Results from the WOW.Com Content Network
Significant delocalisation of the lone pair of electrons on the nitrogen atom gives the group a partial double-bond character. The partial double bond renders the amide group planar, occurring in either the cis or trans isomers. In the unfolded state of proteins, the peptide groups are free to isomerize and adopt both isomers; however, in the ...
Density functional theory (DFT) calculations showed that this is a result of partial double bond character between the carbene carbon and the bismuth(I) center, wherein the p-type lone pair of electrons on the bismuth atom interact with the partially-filled p orbitals on the carbene carbon. [2]
Double bonds occur most commonly between two carbon atoms, for example in alkenes. Many double bonds exist between two different elements: for example, in a carbonyl group between a carbon atom and an oxygen atom. Other common double bonds are found in azo compounds (N=N), imines (C=N), and sulfoxides (S=O). In a skeletal formula, a double bond ...
Similar to carbon–carbon bonds, these bonds can form stable double bonds, as in imines; and triple bonds, such as nitriles. Bond lengths range from 147.9 pm for simple amines to 147.5 pm for C-N= compounds such as nitromethane to 135.2 pm for partial double bonds in pyridine to 115.8 pm for triple bonds as in nitriles. [2]
Analogous to amides, thioamides exhibit greater multiple bond character along the C-N bond, ... reflecting the partial double bond character of their C-N bonds. [9]
In chemistry, the double bond rule states that elements with a principal quantum number (n) greater than 2 for their valence electrons (period 3 elements and higher) tend not to form multiple bonds (e.g. double bonds and triple bonds). Double bonds for these heavier elements, when they exist, are often weak due to poor orbital overlap between ...
Different styles of structural formulas may represent aromaticity in different ways, leading to different depictions of the same chemical compound. Another example is formal double bonds where the electron density is spread outside the formal bond, leading to partial double bond character and slow inter-conversion at room temperature. For all ...
As for most amides, the spectroscopic evidence indicates partial double bond character for the C−N and C−O bonds.Thus, the infrared spectrum shows a C=O stretching frequency at only 1675 cm −1, whereas a ketone would absorb near 1700 cm −1. [6] DMF is a classic example of a fluxional molecule. [7]