Search results
Results from the WOW.Com Content Network
The oxidation of 2,4,6-tri-tert-butylphenol in the alkaline to the intensely blue-colored phenoxy radical can also occur with potassium ferricyanide. [1] [9] [6] The 2,4,6-tri-tert-butylphenoxy radical forms blue crystals on cooling to -70 °C which are stable at room temperature for several weeks and only gradually turn yellow. [9]
The free radical theory of aging states that organisms age because cells accumulate free radical damage over time. [1] A free radical is any atom or molecule that has a single unpaired electron in an outer shell. [2] While a few free radicals such as melanin are not chemically reactive, most biologically relevant free radicals are highly ...
Pages in category "Free radicals" The following 82 pages are in this category, out of 82 total. This list may not reflect recent changes. ...
In atmospheric chemistry, the most common scavenger is the hydroxyl radical, a short-lived radical produced photolytically in the atmosphere. It is the most important oxidant for carbon monoxide, methane and other hydrocarbons, sulfur dioxide, hydrogen sulfide, and most of other contaminants, removing them from the atmosphere.
Pentaerythritol tetrakis(3,5-di-tert-butyl-4-hydroxyhydrocinnamate): A primary antioxidant consisting of sterically hindered phenols with para-propionate groups. Primary antioxidants (also known as chain-breaking antioxidants) act as radical scavengers and remove peroxy radicals (ROO•), as well as to a lesser extent alkoxy radicals (RO•), hydroxyl radicals (HO•) and alkyl radicals (R•).
Living free radical polymerization is a type of living polymerization where the active polymer chain end is a free radical. Several methods exist. Several methods exist. IUPAC recommends [ 1 ] to use the term " reversible-deactivation radical polymerization " instead of "living free radical polymerization", though the two terms are not synonymous.
Radical polymerisation of unsaturated monomers is generally propagated by C-radicals. These can be effectively terminated by combining with other radicals to form neutral species and many true inhibitors operate through this mechanism. In the simplest example oxygen can be used as it exists naturally in its triplet state (i.e. it is a diradical).
The mitochondrial theory of ageing has two varieties: free radical and non-free radical. The first is one of the variants of the free radical theory of ageing. It was formulated by J. Miquel and colleagues in 1980 [1] and was developed in the works of Linnane and coworkers (1989). [2] The second was proposed by A. N. Lobachev in 1978. [3]