Search results
Results from the WOW.Com Content Network
Log5 is a method of estimating the probability that team A will win a game against team B, based on the odds ratio between the estimated winning probability of Team A and Team B against a larger set of teams.
Note: x > 0 is assumed throughout this article, and the constant of integration is omitted for simplicity. Integrals involving only logarithmic functions
The algorithm relies on the fact that every real number x where 1 < x < 2 can be represented as a product of distinct factors of the form 1 + 2 −k. The algorithm sequentially builds that product P, starting with P = 1 and k = 1: if P · (1 + 2 −k) < x, then it changes P to P · (1 + 2 −k). It then increases by one regardless.
Equally spaced values on a logarithmic scale have exponents that increment uniformly. Examples of equally spaced values are 10, 100, 1000, 10000, and 100000 (i.e., 10 1, 10 2, 10 3, 10 4, 10 5) and 2, 4, 8, 16, and 32 (i.e., 2 1, 2 2, 2 3, 2 4, 2 5). Exponential growth curves are often depicted on a logarithmic scale graph.
For example, log 10 10000 = 4, and log 10 0.001 = −3. These are instances of the discrete logarithm problem. Other base-10 logarithms in the real numbers are not instances of the discrete logarithm problem, because they involve non-integer exponents. For example, the equation log 10 53 = 1.724276… means that 10 1.724276… = 53.
An easy way to calculate log 2 n on calculators that do not have a log 2 function is to use the natural logarithm (ln) or the common logarithm (log or log 10) functions, which are found on most scientific calculators. To change the logarithm base to 2 from e, 10, or any other base b, one can use the formulae: [50] [53]
The mathematical notation for using the common logarithm is log(x), [4] log 10 (x), [5] or sometimes Log(x) with a capital L; [a] on calculators, it is printed as "log", but mathematicians usually mean natural logarithm (logarithm with base e ≈ 2.71828) rather than common logarithm when writing "log".
In a third layer, the logarithms of rational numbers r = a / b are computed with ln(r) = ln(a) − ln(b), and logarithms of roots via ln n √ c = 1 / n ln(c).. The logarithm of 2 is useful in the sense that the powers of 2 are rather densely distributed; finding powers 2 i close to powers b j of other numbers b is comparatively easy, and series representations of ln(b) are ...