Search results
Results from the WOW.Com Content Network
A homologous series is a group of compounds that differ by a constant unit, generally a methylene (−CH 2 −) group. The reactants undergo a homologation when the number of a repeated structural unit in the molecules is increased. The most common homologation reactions increase the number of methylene (−CH 2 −) units in saturated chain ...
The name "homologous series" is also often used for any collection of compounds that have similar structures or include the same functional group, such as the general alkanes (straight and branched), the alkenes (olefins), the carbohydrates, etc. However, if the members cannot be arranged in a linear order by a single parameter, the collection ...
More complex alkenes may be named with the E–Z notation for molecules with three or four different substituents (side groups). For example, of the isomers of butene , the two methyl groups of ( Z )-but-2 -ene (a.k.a. cis -2-butene) appear on the same side of the double bond, and in ( E )-but-2-ene (a.k.a. trans -2-butene) the methyl groups ...
Alkyl groups form homologous series. The simplest series have the general formula −C n H 2n+1. Alkyls include methyl, (−CH 3), ethyl (−C 2 H 5), propyl (−C 3 H 7), butyl (−C 4 H 9), pentyl (−C 5 H 11), and so on. Alkyl groups that contain one ring have the formula −C n H 2n−1, e.g. cyclopropyl and cyclohexyl.
In organic chemistry, a functional group is a substituent or moiety in a molecule that causes the molecule's characteristic chemical reactions.The same functional group will undergo the same or similar chemical reactions regardless of the rest of the molecule's composition.
A 3D model of ethyne (), the simplest alkyneIn organic chemistry, an alkyne is an unsaturated hydrocarbon containing at least one carbon—carbon triple bond. [1] The simplest acyclic alkynes with only one triple bond and no other functional groups form a homologous series with the general chemical formula C n H 2n−2.
There are two types of alpha-olefins, branched and linear (or normal). The chemical properties of branched alpha-olefins with a branch at either the second (vinylidene) or the third carbon number are significantly different from the properties of linear alpha-olefins and those with branches on the fourth carbon number and further from the start of the chain.
In organic chemistry, the E i mechanism (Elimination Internal/Intramolecular), also known as a thermal syn elimination or a pericyclic syn elimination, is a special type of elimination reaction in which two vicinal (adjacent) substituents on an alkane framework leave simultaneously via a cyclic transition state to form an alkene in a syn elimination. [1]