Search results
Results from the WOW.Com Content Network
Paging obviously benefits from temporal and spatial locality. A cache is a simple example of exploiting temporal locality, because it is a specially designed, faster but smaller memory area, generally used to keep recently referenced data and data near recently referenced data, which can lead to potential performance increases.
LIRS (Low Inter-reference Recency Set) is a page replacement algorithm with an improved performance over LRU (Least Recently Used) and many other newer replacement algorithms. [1] This is achieved by using "reuse distance" [ 2 ] as the locality metric for dynamically ranking accessed pages to make a replacement decision.
In computing, a memory access pattern or IO access pattern is the pattern with which a system or program reads and writes memory on secondary storage.These patterns differ in the level of locality of reference and drastically affect cache performance, [1] and also have implications for the approach to parallelism [2] [3] and distribution of workload in shared memory systems. [4]
Most modern CPUs are so fast that for most program workloads, the bottleneck is the locality of reference of memory accesses and the efficiency of the caching and memory transfer between different levels of the hierarchy [citation needed]. As a result, the CPU spends much of its time idling, waiting for memory I/O to complete.
Caching and locality of reference [ edit ] The linked list of separate chaining implementation may not be cache-conscious due to spatial locality — locality of reference —when the nodes of the linked list are scattered across memory, thus the list traversal during insert and search may entail CPU cache inefficiencies.
This is primarily due to CPU caching which exploits spatial locality of reference. [1] In addition, contiguous access makes it possible to use SIMD instructions that operate on vectors of data. In some media such as magnetic-tape data storage, accessing sequentially is orders of magnitude faster than nonsequential access. [citation needed]
A hash-rehash cache and a column-associative cache are examples of a pseudo-associative cache. In the common case of finding a hit in the first way tested, a pseudo-associative cache is as fast as a direct-mapped cache, but it has a much lower conflict miss rate than a direct-mapped cache, closer to the miss rate of a fully associative cache.
Locality of reference of user software has weakened. This is mostly attributed to the spread of object-oriented programming techniques that favor large numbers of small functions, use of sophisticated data structures like trees and hash tables that tend to result in chaotic memory reference patterns, and the advent of garbage collection that ...