Search results
Results from the WOW.Com Content Network
A right frustum is a right pyramid or a right cone truncated perpendicularly to its axis; [3] otherwise, it is an oblique frustum. In a truncated cone or truncated pyramid , the truncation plane is not necessarily parallel to the cone's base, as in a frustum.
2.2 Center of mass. 2.3 Right circular cone. ... it is called a frustum. [1] ... this formula can easily be computed using calculus — it is, ...
The formula for the volume of a frustum of a paraboloid [23] [24] is: V = (π h/2)(r 1 2 + r 2 2), where h = height of the frustum, r 1 is the radius of the base of the frustum, and r 2 is the radius of the top of the frustum. This allows us to use a paraboloid frustum where that form appears more appropriate than a cone.
Frustum of a cone. A similar, but more complex formula can be used where the trunk is significantly more elliptical in shape where the lengths of the major and minor axis of the ellipse are measured at the top and bottom of each segment. [2] [8] In areas where the trunk bifurcates the trunk will not have a circular or simple elliptical diameter.
The volume is equal to the product of the height of the frustum and the Heronian mean of the areas of the opposing parallel faces. [2] A version of this formula, for square frusta, appears in the Moscow Mathematical Papyrus from Ancient Egyptian mathematics, whose content dates to roughly 1850 BC. [1] [3]
The fourteenth problem of the Moscow Mathematical calculates the volume of a frustum. Problem 14 states that a pyramid has been truncated in such a way that the top area is a square of length 2 units, the bottom a square of length 4 units, and the height 6 units, as shown.
For a regular n-gonal bifrustum with the equatorial polygon sides a, bases sides b and semi-height (half the distance between the planes of bases) h, the lateral surface area A l, total area A and volume V are: [2] and [3] = (+) () + = + = + + Note that the volume V is twice the volume of a frusta.
A special type of area density is called column density (also columnar mass density or simply column density), denoted ρ A or σ. It is the mass of substance per unit area integrated along a path; [ 1 ] It is obtained integrating volumetric density ρ {\displaystyle \rho } over a column: [ 2 ] σ = ∫ ρ d s . {\displaystyle \sigma =\int \rho ...