enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.

  3. Matrix representation of conic sections - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections. It provides easy ways to calculate a conic section's axis , vertices , tangents and the pole and polar relationship between points and lines of the plane determined by the conic.

  4. Menaechmus - Wikipedia

    en.wikipedia.org/wiki/Menaechmus

    Menaechmus (Greek: Μέναιχμος, c. 380 – c. 320 BC) was an ancient Greek mathematician, geometer and philosopher [1] born in Alopeconnesus or Prokonnesos in the Thracian Chersonese, who was known for his friendship with the renowned philosopher Plato and for his apparent discovery of conic sections and his solution to the then-long-standing problem of doubling the cube using the ...

  5. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    The problem of intersection of an ellipse/hyperbola/parabola with another conic section leads to a system of quadratic equations, which can be solved in special cases easily by elimination of one coordinate. Special properties of conic sections may be used to obtain a solution. In general the intersection points can be determined by solving the ...

  6. Confocal conic sections - Wikipedia

    en.wikipedia.org/wiki/Confocal_conic_sections

    A pencil of confocal ellipses and hyperbolas is specified by choice of linear eccentricity c (the x-coordinate of one focus) and can be parametrized by the semi-major axis a (the x-coordinate of the intersection of a specific conic in the pencil and the x-axis). When 0 < a < c the conic is a hyperbola; when c < a the conic is an ellipse.

  7. Brianchon's theorem - Wikipedia

    en.wikipedia.org/wiki/Brianchon's_theorem

    Brianchon's theorem can be proved by the idea of radical axis or reciprocation. To prove it take an arbitrary length (MN) and carry it on the tangents starting from the contact points: PL = RJ = QH = MN etc. Draw circles a, b, c tangent to opposite sides of the hexagon at the created points (H,W), (J,V) and (L,Y) respectively.

  8. Circumconic and inconic - Wikipedia

    en.wikipedia.org/wiki/Circumconic_and_inconic

    In Euclidean geometry, a circumconic is a conic section that passes through the three vertices of a triangle, [1] and an inconic is a conic section inscribed in the sides, possibly extended, of a triangle. [2] Suppose A, B, C are distinct non-collinear points, and let ABC denote the triangle whose vertices are A, B, C.

  9. Quadric - Wikipedia

    en.wikipedia.org/wiki/Quadric

    In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas).It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections.