Search results
Results from the WOW.Com Content Network
Transcriptomics is most commonly applied to the mRNA content of the cell. However, the same techniques are equally applicable to non-coding RNAs (ncRNAs) that are not translated into a protein, but instead have direct functions (e.g. roles in protein translation, DNA replication, RNA splicing, and transcriptional regulation).
Two biological techniques are used to study the transcriptome, namely DNA microarray, a hybridization-based technique and RNA-seq, a sequence-based approach. [1] RNA-seq is the preferred method and has been the dominant transcriptomics technique since the 2010s.
High-throughput next-generation sequencing has become a popular technique in transcriptomics, which represent a snapshot of gene expression. In eukaryotes, making phylogenetic inferences using RNA is complicated by alternative splicing, which produces multiple transcripts from a single gene.
This single cell shows the process of the central dogma of molecular biology, which are all steps researchers are interested to quantify (DNA, RNA, and Protein).. In cell biology, single-cell analysis and subcellular analysis [1] refer to the study of genomics, transcriptomics, proteomics, metabolomics, and cell–cell interactions at the level of an individual cell, as opposed to more ...
While these breakthroughs in transcriptomics technologies have enabled the generation of single-cell transcriptomic data, they also presented new computational and analytical challenges. Bioinformaticians can use techniques from bulk RNA-seq for single-cell data.
In the mid 2010s several techniques combined with Next Generation Sequencing were developed that employ the "tag" principle for "digital gene expression profiling" but without the use of the tagging enzyme. The "MACE" approach, (=Massive Analysis of cDNA Ends) generates tags somewhere in the last 1500 bps of a transcript.
The latter comprise a number of "-omics" such as transcriptomics (gene expression), proteomics (protein production), and metabolomics. Functional genomics uses mostly multiplex techniques to measure the abundance of many or all gene products such as mRNAs or proteins within a biological sample. A more focused functional genomics approach might ...
Spatial transcriptomics, or spatially resolved transcriptomics, is a method that captures positional context of transcriptional activity within intact tissue. [1] The historical precursor to spatial transcriptomics is in situ hybridization, [2] where the modernized omics terminology refers to the measurement of all the mRNA in a cell rather than select RNA targets.