Search results
Results from the WOW.Com Content Network
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
Binomial series; Binomial theorem; Binomial transform; Binomial type; Carlson's theorem; Catalan number. Fuss–Catalan number; Central binomial coefficient; Combination; Combinatorial number system; De Polignac's formula; Difference operator; Difference polynomials; Digamma function; Egorychev method; Erdős–Ko–Rado theorem; Euler ...
Beta negative binomial distribution; Bhargava factorial; Binomial (polynomial) Binomial approximation; Binomial coefficient; Binomial distribution; Binomial regression; Binomial series; Binomial theorem; Binomial transform; Binomial type; Brocard's problem
ATS theorem (number theory) Abel's binomial theorem (combinatorics) Abel's curve theorem (mathematical analysis) Abel's theorem (mathematical analysis) Abelian and Tauberian theorems (mathematical analysis) Abel–Jacobi theorem (algebraic geometry) Abel–Ruffini theorem (theory of equations, Galois theory) Abhyankar–Moh theorem (algebraic ...
A derivation of Faulhaber's formula using the umbral form is available in The Book of Numbers by John Horton Conway and Richard K. Guy. [17] Classically, this umbral form was considered as a notational convenience. In the modern umbral calculus, on the other hand, this is given a formal mathematical underpinning.
In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers n ≥ k ≥ 0 and is written (). It is the coefficient of the x k term in the polynomial expansion of the binomial power (1 + x) n; this coefficient can be ...
Binomial (polynomial), a polynomial with two terms; Binomial coefficient, numbers appearing in the expansions of powers of binomials; Binomial QMF, a perfect-reconstruction orthogonal wavelet decomposition; Binomial theorem, a theorem about powers of binomials; Binomial type, a property of sequences of polynomials; Binomial series, a ...
In mathematics, Pascal's triangle is an infinite triangular array of the binomial coefficients which play a crucial role in probability theory, combinatorics, and algebra.In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in Persia, [1] India, [2] China, Germany, and Italy.