Search results
Results from the WOW.Com Content Network
Primordium development in plants is critical to the proper positioning and development of plant organs and cells. The process of primordium development is intricately regulated by a set of genes that affect the positioning, growth and differentiation of the primordium. Genes including STM (shoot meristemless) and CUC (cup-shaped cotyledon) are ...
Flower differentiation is a plant process by which the shoot apical meristem changes its anatomy to generate a flower or inflorescence in lieu of other structures. Anatomical changes begin at the edge of the meristem, generating first the outer whorls of the flower - the calyx and the corolla, and later the inner whorls of the flower, the androecium and gynoecium.
The meristem can be defined as the tissue or group of plant tissues that contain undifferentiated stem cells, which are capable of producing any type of cell tissue.Their maintenance and development, both in the vegetative meristem or the meristem of the inflorescence is controlled by genetic cell fate determination mechanisms.
Structure of a plant cell. Plant cells are the cells present in green plants, photosynthetic eukaryotes of the kingdom Plantae.Their distinctive features include primary cell walls containing cellulose, hemicelluloses and pectin, the presence of plastids with the capability to perform photosynthesis and store starch, a large vacuole that regulates turgor pressure, the absence of flagella or ...
Pruning techniques such as coppicing and pollarding make use of this natural response to curtail direct plant growth and produce a desired shape, size, and/or productivity level for the plant. The principle of apical dominance is manipulated for espalier creation, hedge building, or artistic sculptures called topiary .
This is a diagram of cell elongation in a plant. In sum, the acidity within the cell wall as a result of a high proton concentration in the cell wall. As a result,the cell wall becomes more flexible so that when water comes into the plant vacuole, the plant cell will elongate. This image shows the development of a normal plant.
The three cells left at the end of the cell near the micropylar become the egg apparatus with an egg cell in the center and two synergids. A cell wall forms around the other set of nuclei and forms the antipodals. The cells in the center develop into the central cell. This entire structure with its eight nuclei is called the embryonic sac.
The model proposes that auxin, a plant growth hormone, is synthesized in the coleoptile tip, which senses light or gravity and will send the auxin down the appropriate side of the shoot. This causes asymmetric growth of one side of the plant. As a result, the plant shoot will begin to bend toward a light source or toward the surface. [3]