Search results
Results from the WOW.Com Content Network
A central-force problem is said to be "integrable" if this integration can be solved in terms of known functions. If the force is a power law, i.e., if F ( r ) = a r n {\displaystyle F(r)=ar^{n}} , then u {\displaystyle u} can be expressed in terms of circular functions and/or elliptic functions if n {\displaystyle n} equals 1, -2, -3 (circular ...
A small holding force exerted on one side can carry a much larger loading force on the other side; this is the principle by which a capstan-type device operates. A holding capstan is a ratchet device that can turn only in one direction; once a load is pulled into place in that direction, it can be held with a much smaller force.
In classical mechanics, the central-force problem is to determine the motion of a particle in a single central potential field.A central force is a force (possibly negative) that points from the particle directly towards a fixed point in space, the center, and whose magnitude only depends on the distance of the object to the center.
A body is said to be "free" when it is singled out from other bodies for the purposes of dynamic or static analysis. The object does not have to be "free" in the sense of being unforced, and it may or may not be in a state of equilibrium; rather, it is not fixed in place and is thus "free" to move in response to forces and torques it may experience.
The three-body problem is a special case of the n-body problem, which describes how n objects move under one of the physical forces, such as gravity. These problems have a global analytical solution in the form of a convergent power series, as was proven by Karl F. Sundman for n = 3 and by Qiudong Wang for n > 3 (see n -body problem for details).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Upgrade to a faster, more secure version of a supported browser. It's free and it only takes a few moments:
A starting point for solving contact problems is to understand the effect of a "point-load" applied to an isotropic, homogeneous, and linear elastic half-plane, shown in the figure to the right. The problem may be either plane stress or plane strain. This is a boundary value problem of linear elasticity subject to the traction boundary conditions: