Search results
Results from the WOW.Com Content Network
Lithium chloride is a chemical compound with the formula Li Cl.The salt is a typical ionic compound (with certain covalent characteristics), although the small size of the Li + ion gives rise to properties not seen for other alkali metal chlorides, such as extraordinary solubility in polar solvents (83.05 g/100 mL of water at 20 °C) and its hygroscopic properties.
Lithium chlorate is the inorganic chemical compound with the formula LiClO 3. Like all chlorates, it is an oxidizer and may become unstable and possibly explosive if mixed with organic materials, reactive metal powders, or sulfur. It can be manufactured by the reaction of hot, concentrated lithium hydroxide with chlorine:
An intramolecular S N 2 reaction by the anion forms the cyclic backbone of morphine. [14] Synthesis of morphine using lithium–halogen exchange. Lithium–halogen exchange is a crucial part of Parham cyclization. [15] In this reaction, an aryl halide (usually iodide or bromide) exchanges with organolithium to form a lithiated arene species.
Sample aldol reaction with lithium enolate. Lithium enolate formation can be generalized as an acid–base reaction, in which the relatively acidic proton α to the carbonyl group (pK =20-28 in DMSO) reacts with organolithium base. Generally, strong, non-nucleophilic bases, especially lithium amides such LDA, LiHMDS and LiTMP are used.
In chemistry, a reactivity series (or reactivity series of elements) is an empirical, calculated, and structurally analytical progression [1] of a series of metals, arranged by their "reactivity" from highest to lowest.
Water-reactive substances [1] are those that spontaneously undergo a chemical reaction with water, often noted as generating flammable gas. [2] Some are highly reducing in nature. [3] Notable examples include alkali metals, lithium through caesium, and alkaline earth metals, magnesium through barium.
This lithium–halogen exchange reaction is useful for preparation of several types of RLi compounds, particularly aryllithium and some vinyllithium reagents. The utility of this method is significantly limited, however, by the presence in the reaction mixture of n -BuBr or n -BuI, which can react with the RLi reagent formed, and by competing ...
Lithium forms salt-like derivatives with all halides and pseudohalides. Some examples include the halides LiF, LiCl, LiBr, LiI, as well as the pseudohalides and related anions. Lithium carbonate has been described as the most important compound of lithium. [100] This white solid is the principal product of beneficiation of lithium ores.