Search results
Results from the WOW.Com Content Network
The above elementwise sum across each row i of P may be more concisely written as P1 = 1, where 1 is the α-dimensional column vector of all ones. Using this, it can be seen that the product of two right stochastic matrices P ′ and P ′′ is also right stochastic: P ′ P ′′ 1 = P ′ ( P ′′ 1 ) = P ′ 1 = 1 .
In probability theory, a transition-rate matrix (also known as a Q-matrix, [1] intensity matrix, [2] or infinitesimal generator matrix [3]) is an array of numbers describing the instantaneous rate at which a continuous-time Markov chain transitions between states.
Another discrete-time process that may be derived from a continuous-time Markov chain is a δ-skeleton—the (discrete-time) Markov chain formed by observing X(t) at intervals of δ units of time. The random variables X (0), X (δ), X (2δ), ... give the sequence of states visited by the δ-skeleton.
Including the fact that the sum of each the rows in P is 1, there are n+1 equations for determining n unknowns, so it is computationally easier if on the one hand one selects one row in Q and substitutes each of its elements by one, and on the other one substitutes the corresponding element (the one in the same column) in the vector 0, and next ...
There is a simple generalisation to matrices with more columns and rows such that the i th row sum is equal to r i (a positive integer), the column sums are equal to 1, and all cells are non-negative (the sum of the row sums being equal to the number of columns). Any matrix in this form can be expressed as a convex combination of matrices in ...
For a continuous time Markov chain (CTMC) with transition rate matrix, if can be found such that for every pair of states and π i q i j = π j q j i {\displaystyle \pi _{i}q_{ij}=\pi _{j}q_{ji}} holds, then by summing over j {\displaystyle j} , the global balance equations are satisfied and π {\displaystyle \pi } is the stationary ...
The Markov-modulated Poisson process or MMPP where m Poisson processes are switched between by an underlying continuous-time Markov chain. [8] If each of the m Poisson processes has rate λ i and the modulating continuous-time Markov has m × m transition rate matrix R , then the MAP representation is
Consider this figure depicting a section of a Markov chain with states i, j, k and l and the corresponding transition probabilities. Here Kolmogorov's criterion implies that the product of probabilities when traversing through any closed loop must be equal, so the product around the loop i to j to l to k returning to i must be equal to the loop the other way round,