Search results
Results from the WOW.Com Content Network
The example function has an easy-to-find anti-derivative so estimating the integral by Riemann sums is mostly an academic exercise; however it must be remembered that not all functions have anti-derivatives so estimating their integrals by summation is practically important.
The first way is to always choose a rational point, so that the Riemann sum is as large as possible. This will make the value of the Riemann sum at least 1 − ε. The second way is to always choose an irrational point, so that the Riemann sum is as small as possible. This will make the value of the Riemann sum at most ε.
The trapezoidal rule may be viewed as the result obtained by averaging the left and right Riemann sums, and is sometimes defined this way. The integral can be even better approximated by partitioning the integration interval, applying the trapezoidal rule to each subinterval, and summing the results. In practice, this "chained" (or "composite ...
There is a function, called the Riemann zeta function, written in the image above. For each s, this function gives an infinite sum, which takes some basic calculus to approach for even the ...
The Riemann sum inputs a function and outputs a function, which gives the algebraic sum of areas between the part of the graph of the input and the x-axis. A motivating example is the distances traveled in a given time.
Abel's summation formula can be generalized to the case where is only assumed to be continuous if the integral is interpreted as a Riemann–Stieltjes integral: ∑ x < n ≤ y a n ϕ ( n ) = A ( y ) ϕ ( y ) − A ( x ) ϕ ( x ) − ∫ x y A ( u ) d ϕ ( u ) . {\displaystyle \sum _{x<n\leq y}a_{n}\phi (n)=A(y)\phi (y)-A(x)\phi (x)-\int _{x ...
The Riemann–Stieltjes integral admits integration by parts in the form () = () () ()and the existence of either integral implies the existence of the other. [2]On the other hand, a classical result [3] shows that the integral is well-defined if f is α-Hölder continuous and g is β-Hölder continuous with α + β > 1 .
In real analysis, the Darboux integral is constructed using Darboux sums and is one possible definition of the integral of a function. Darboux integrals are equivalent to Riemann integrals , meaning that a function is Darboux-integrable if and only if it is Riemann-integrable, and the values of the two integrals, if they exist, are equal. [ 1 ]