Search results
Results from the WOW.Com Content Network
This dataset focuses on whether tweets have (almost) same meaning/information or not. Manually labeled. tokenization, part-of-speech and named entity tagging 18,762 Text Regression, Classification 2015 [57] [58] Xu et al. Geoparse Twitter benchmark dataset This dataset contains tweets during different news events in different countries.
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
RAWPED is a dataset for detection of pedestrians in the context of railways. The dataset is labeled box-wise. 26000 Images Object recognition and classification 2020 [70] [71] Tugce Toprak, Burak Belenlioglu, Burak Aydın, Cuneyt Guzelis, M. Alper Selver OSDaR23 OSDaR23 is a multi-sensory dataset for detection of objects in the context of railways.
Regression models predict a value of the Y variable given known values of the X variables. Prediction within the range of values in the dataset used for model-fitting is known informally as interpolation. Prediction outside this range of the data is known as extrapolation. Performing extrapolation relies strongly on the regression assumptions.
Cross-sectional data can be used in cross-sectional regression, which is regression analysis of cross-sectional data. For example, the consumption expenditures of various individuals in a fixed month could be regressed on their incomes, accumulated wealth levels, and their various demographic features to find out how differences in those ...
In statistics, the logistic model (or logit model) is a statistical model that models the log-odds of an event as a linear combination of one or more independent variables. In regression analysis , logistic regression [ 1 ] (or logit regression ) estimates the parameters of a logistic model (the coefficients in the linear or non linear ...
In the multiple response permutation procedure (MRPP) example above, two datasets with a panel structure are shown and the objective is to test whether there's a significant difference between people in the sample data. Individual characteristics (income, age, sex) are collected for different persons and different years.
MARS is suitable for handling large datasets, and implementations run very quickly. However, recursive partitioning can be faster than MARS [citation needed]. With MARS models, as with any non-parametric regression, parameter confidence intervals and other checks on the model cannot be calculated directly (unlike linear regression models).