Search results
Results from the WOW.Com Content Network
A crista (/ ˈ k r ɪ s t ə /; pl.: cristae) is a fold in the inner membrane of a mitochondrion. The name is from the Latin for crest or plume , and it gives the inner membrane its characteristic wrinkled shape, providing a large amount of surface area for chemical reactions to occur on.
This ratio is variable and mitochondria from cells that have a greater demand for ATP, such as muscle cells, contain even more cristae. Cristae membranes are studded on the matrix side with small round protein complexes known as F 1 particles, the site of proton-gradient driven ATP synthesis. Cristae affect overall chemiosmotic function of ...
In the mitochondrion, the matrix is the space within the inner membrane. The word "matrix" stems from the fact that this space is viscous, compared to the relatively aqueous cytoplasm. The mitochondrial matrix contains the mitochondrial DNA, ribosomes, soluble enzymes, small organic molecules, nucleotide cofactors, and inorganic ions. [1]
A mitochondrion (pl. mitochondria) is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used throughout the cell as a source of chemical energy. [2]
In fact, mitochondria and chloroplasts are the product of endosymbiosis and trace back to incorporated prokaryotes. This process is described in the endosymbiotic theory. The origin of the mitochondrion triggered the origin of eukaryotes, and the origin of the plastid the origin of the Archaeplastida, one of the major eukaryotic supergroups.
OPA1 plays both a genetic and molecular role in mitochondrial fusion and in cristae remodeling during apoptosis. [5] OPA1 exists in two forms; the first being soluble and found in the intermembrane space, and the second as an integral inner membrane form, work together to restructure and shape the cristae during and after apoptosis.
This part of the enzyme is located in the mitochondrial inner membrane and couples proton translocation to the rotation that causes ATP synthesis in the F 1 region. In eukaryotes, mitochondrial F O forms membrane-bending dimers. These dimers self-arrange into long rows at the end of the cristae, possibly the first step of cristae formation. [12]
A second contributing factor is that cristae, the inner membranes of mitochondria, increase the surface area and therefore the amount of proteins in the membrane that assist in the synthesis of ATP. Along the electron transport chain, there are separate compartments, each with their own concentration gradient of H + ions, which are the power ...