Search results
Results from the WOW.Com Content Network
The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances.
μ = Gm 1 + Gm 2 = μ 1 + μ 2, where m 1 and m 2 are the masses of the two bodies. Then: for circular orbits, rv 2 = r 3 ω 2 = 4π 2 r 3 /T 2 = μ; for elliptic orbits, 4π 2 a 3 /T 2 = μ (with a expressed in AU; T in years and M the total mass relative to that of the Sun, we get a 3 /T 2 = M) for parabolic trajectories, rv 2 is constant and ...
In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...
r is the distance between the two bodies' centers of mass; a is the length of the semi-major axis (a > 0 for ellipses, a = ∞ or 1/a = 0 for parabolas, and a < 0 for hyperbolas) G is the gravitational constant; M is the mass of the central body; The product of GM can also be expressed as the standard gravitational parameter using the Greek ...
The weight of an object on Earth's surface is the downwards force on that object, given by Newton's second law of motion, or F = m a (force = mass × acceleration). Gravitational acceleration contributes to the total gravity acceleration, but other factors, such as the rotation of Earth, also contribute, and, therefore, affect the weight of the ...
In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.
The general formula for the escape velocity of an object at a distance r from the center of a planet with mass M is [12] = =, where G is the gravitational constant and g is the gravitational acceleration. The escape velocity from Earth's surface is about 11 200 m/s, and is irrespective of the direction of the object.
The X/Y plane coincides with Earth's equatorial plane, with the +X axis pointing toward the vernal equinox and the Y axis completing a right-handed set. The ECI reference frame is not truly inertial because of the slow, 26,000 year precession of Earth's axis , so the reference frames defined by Earth's orientation at a standard astronomical ...