Search results
Results from the WOW.Com Content Network
The monocots or monocotyledons have, as the name implies, a single (mono-) cotyledon, or embryonic leaf, in their seeds.Historically, this feature was used to contrast the monocots with the dicotyledons or dicots which typically have two cotyledons; however, modern research has shown that the dicots are not a natural group, and the term can only be used to indicate all angiosperms that are not ...
Cotyledon from a Judas-tree (Cercis siliquastrum, a dicot) seedling Comparison of a monocot and dicot sprouting. The visible part of the monocot plant (left) is actually the first true leaf produced from the meristem; the cotyledon itself remains within the seed Schematic of epigeal vs hypogeal germination Peanut seeds split in half, showing the embryos with cotyledons and primordial root Two ...
Aside from cotyledon number, other broad differences have been noted between monocots and dicots, although these have proven to be differences primarily between monocots and eudicots. Many early-diverging dicot groups have monocot characteristics such as scattered vascular bundles, trimerous flowers, and non-tricolpate pollen. [5]
In dicots, the hypocotyl is what appears to be the base stem under the spent withered cotyledons, and the shoot just above that is the epicotyl. In monocot plants, the first shoot that emerges from the ground or from the seed is the epicotyl , from which the first shoots and leaves emerge.
Monocots have a single cotyledon and long and narrow leaves with parallel veins. Their vascular bundles are scattered. Their petals or flower parts are in multiples of three. Dicots have two cotyledons and broad leaves with network of veins. Their vascular bundles are in a ring. Their petals or flower parts are in multiples of four or five.
Vascular bundles are present throughout the monocot stem, although concentrated towards the outside. This differs from the dicot stem that has a ring of vascular bundles and often none in the center. The shoot apex in monocot stems is more elongated. Leaf sheathes grow up around it, protecting it. This is true to some extent of almost all monocots.
Vascular cambia are found in all seed plants except for five angiosperm lineages which have independently lost it; Nymphaeales, Ceratophyllum, Nelumbo, Podostemaceae, and monocots. [1] In dicot and gymnosperm trees, the vascular cambium is the obvious line separating the bark and wood; they also have a cork cambium.
Diagram of fine scale leaf internal anatomy. The epidermal tissue includes several differentiated cell types: epidermal cells, guard cells, subsidiary cells, and epidermal hairs . The epidermal cells are the most numerous, largest, and least specialized. These are typically more elongated in the leaves of monocots than in those of dicots.