enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Volume form - Wikipedia

    en.wikipedia.org/wiki/Volume_form

    In other words, a volume form gives rise to a measure with respect to which functions can be integrated by the appropriate Lebesgue integral. The absolute value of a volume form is a volume element, which is also known variously as a twisted volume form or pseudo-volume form. It also defines a measure, but exists on any differentiable manifold ...

  3. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    An oriented -dimensional Riemannian manifold (,) has a unique -form called the Riemannian volume form. [7] The Riemannian volume form is preserved by orientation-preserving isometries. [8] The volume form gives rise to a measure on which allows measurable functions to be integrated. [citation needed] If is compact, the volume of is . [7]

  4. First variation of area formula - Wikipedia

    en.wikipedia.org/wiki/First_variation_of_area...

    This shows how a minimal submanifold can be characterized either by the critical point theory of the volume functional or by an explicit partial differential equation for the immersion. The special case of the first variation formula arising when S is an interval on the real number line is particularly well-known.

  5. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Let be a smooth manifold and let be a one-parameter family of Riemannian or pseudo-Riemannian metrics. Suppose that it is a differentiable family in the sense that for any smooth coordinate chart, the derivatives v i j = ∂ ∂ t ( ( g t ) i j ) {\displaystyle v_{ij}={\frac {\partial }{\partial t}}{\big (}(g_{t})_{ij}{\big )}} exist and are ...

  6. Ricci curvature - Wikipedia

    en.wikipedia.org/wiki/Ricci_curvature

    In general relativity, which involves the pseudo-Riemannian setting, this is reflected by the presence of the Ricci tensor in the Raychaudhuri equation. Partly for this reason, the Einstein field equations propose that spacetime can be described by a pseudo-Riemannian metric, with a strikingly simple relationship between the Ricci tensor and ...

  7. Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/Riemannian_geometry

    Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric (an inner product on the tangent space at each point that varies smoothly from point to point). This gives, in particular, local notions of angle, length of curves, surface area and volume.

  8. Hodge star operator - Wikipedia

    en.wikipedia.org/wiki/Hodge_star_operator

    We define the Hodge dual of a k-form, defining as the unique (n – k)-form satisfying = , for every k-form , where , is a real-valued function on , and the volume form is induced by the pseudo-Riemannian metric. Integrating this equation over , the right side becomes the (square-integrable) scalar product on k-forms, and we obtain: = , .

  9. Nash embedding theorems - Wikipedia

    en.wikipedia.org/wiki/Nash_embedding_theorems

    The technical statement appearing in Nash's original paper is as follows: if M is a given m-dimensional Riemannian manifold (analytic or of class C k, 3 ≤ k ≤ ∞), then there exists a number n (with n ≤ m(3m+11)/2 if M is a compact manifold, and with n ≤ m(m+1)(3m+11)/2 if M is a non-compact manifold) and an isometric embedding ƒ: M → R n (also analytic or of class C k). [15]