Search results
Results from the WOW.Com Content Network
For example, it is sometimes convenient in set theory to permit the domain of a function to be a proper class X, in which case there is formally no such thing as a triple (X, Y, G). With such a definition, functions do not have a domain, although some authors still use it informally after introducing a function in the form f : X → Y .
is a function from domain X to codomain Y. The yellow oval inside Y is the image of . Sometimes "range" refers to the image and sometimes to the codomain. In mathematics, the range of a function may refer to either of two closely related concepts: the codomain of the function, or; the image of the function.
The domain of definition of such a function is the set of inputs for which the algorithm does not run forever. A fundamental theorem of computability theory is that there cannot exist an algorithm that takes an arbitrary general recursive function as input and tests whether 0 belongs to its domain of definition (see Halting problem).
The image of a function is the image of its entire domain, also known as the range of the function. [3] This last usage should be avoided because the word "range" is also commonly used to mean the codomain of f . {\displaystyle f.}
For example, the entire complex plane is a domain, as is the open unit disk, the open upper half-plane, and so forth. Often, a complex domain serves as the domain of definition for a holomorphic function. In the study of several complex variables, the definition of a domain is extended to include any connected open subset of C n.
The term range is sometimes ambiguously used to refer to either the codomain or the image of a function. A codomain is part of a function f if f is defined as a triple ( X , Y , G ) where X is called the domain of f , Y its codomain , and G its graph . [ 1 ]
Interpretation for surjective functions in the Cartesian plane, defined by the mapping f : X → Y, where y = f(x), X = domain of function, Y = range of function. Every element in the range is mapped onto from an element in the domain, by the rule f. There may be a number of domain elements which map to the same range element.
For example, if : [,] is the Dirichlet function that is on irrational numbers and on rational numbers, and [,] is equipped with Lebesgue measure, then the support of is the entire interval [,], but the essential support of is empty, since is equal almost everywhere to the zero function.