Search results
Results from the WOW.Com Content Network
The asthenosphere (from Ancient Greek ἀσθενός (asthenós) 'without strength') is the mechanically weak [1] and ductile region of the upper mantle of Earth. It lies below the lithosphere , at a depth between c. 80 and 200 km (50 and 120 mi) below the surface, and extends as deep as 700 km (430 mi).
Plate tectonics (from Latin tectonicus, from Ancient Greek τεκτονικός (tektonikós) 'pertaining to building') [1] is the scientific theory that Earth 's lithosphere comprises a number of large tectonic plates, which have been slowly moving since 3–4 billion years ago. [2][3][4] The model builds on the concept of continental drift ...
The internal structure of Earth are the layers of the Earth, excluding its atmosphere and hydrosphere. The structure consists of an outer silicate solid crust, a highly viscous asthenosphere, and solid mantle, a liquid outer core whose flow generates the Earth's magnetic field, and a solid inner core. Scientific understanding of the internal ...
Interaction of the asthenosphere, lithosphere, and surface though the mantle process of subduction at an oceanic-continental plate boundary. Volcanism which originates from the mantle occurs on the surface. Interaction of the asthenosphere, lithosphere, and surface through the mantle process of slab break-off. Grey indicates crust, purple ...
Earth's inner structure can be described both chemically (crust, mantle, and core) and mechanically. The lithosphere–asthenosphere boundary lies between Earth's cooler, rigid lithosphere and the warmer, ductile asthenosphere. The actual depth of the boundary is still a topic of debate and study, although it is known to vary according to the ...
Mantle convection is the very slow creep of Earth's solid silicate mantle as convection currents carry heat from the interior to the planet's surface. [2] [3] Mantle convection causes tectonic plates to move around the Earth's surface. [4] The Earth's lithosphere rides atop the asthenosphere, and the two form the components of the upper mantle ...
Inner core super-rotation is the eastward rotation of the inner core of Earth relative to its mantle, for a net rotation rate that is usually [clarification needed] faster than Earth as a whole. A 1995 model of Earth's dynamo predicted super-rotations of up to 3 degrees per year; the following year, this prediction was supported by observed ...
outer core–inner core boundary. Earth's inner core is the innermost geologic layer of the planet Earth. It is primarily a solid ball with a radius of about 1,220 km (760 mi), which is about 20% of Earth's radius or 70% of the Moon 's radius. [1][2] There are no samples of the core accessible for direct measurement, as there are for Earth's ...