enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uncertainty - Wikipedia

    en.wikipedia.org/wiki/Uncertainty

    In daily life, measurement uncertainty is often implicit ("He is 6 feet tall" give or take a few inches), while for any serious use an explicit statement of the measurement uncertainty is necessary. The expected measurement uncertainty of many measuring instruments (scales, oscilloscopes, force gages, rulers, thermometers, etc.) is often stated ...

  3. Uncertainty quantification - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_quantification

    Such an uncertainty cannot solely be classified as aleatoric or epistemic any more, but is a more general inferential uncertainty. In real life applications, both kinds of uncertainties are present. Uncertainty quantification intends to explicitly express both types of uncertainty separately.

  4. Measurement uncertainty - Wikipedia

    en.wikipedia.org/wiki/Measurement_uncertainty

    In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a quantity measured on an interval or ratio scale.. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation.

  5. Real versus nominal value (philosophy) - Wikipedia

    en.wikipedia.org/wiki/Real_versus_nominal_value...

    All real measurements have some variation depending on the accuracy and precision of the test method and the measurement uncertainty. The use of reported values often involves engineering tolerances. One way to consider this is that the real value often has the characteristics of an irrational number. In real-world measuring situations ...

  6. Observational error - Wikipedia

    en.wikipedia.org/wiki/Observational_error

    Measurement errors can be divided into two components: random and systematic. [2] Random errors are errors in measurement that lead to measurable values being inconsistent when repeated measurements of a constant attribute or quantity are taken. Random errors create measurement uncertainty.

  7. Experimental uncertainty analysis - Wikipedia

    en.wikipedia.org/wiki/Experimental_uncertainty...

    For example, an experimental uncertainty analysis of an undergraduate physics lab experiment in which a pendulum can estimate the value of the local gravitational acceleration constant g. The relevant equation [ 1 ] for an idealized simple pendulum is, approximately,

  8. Metrology - Wikipedia

    en.wikipedia.org/wiki/Metrology

    Measurement uncertainty is a value associated with a measurement which expresses the spread of possible values associated with the measurand—a quantitative expression of the doubt existing in the measurement. [35] There are two components to the uncertainty of a measurement: the width of the uncertainty interval and the confidence level. [36]

  9. Uncertainty analysis - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_analysis

    In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with assessing the uncertainty in a measurement.An experiment designed to determine an effect, demonstrate a law, or estimate the numerical value of a physical variable will be affected by errors due to instrumentation, methodology, presence of confounding effects and so on.