enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hybrid sulfur cycle - Wikipedia

    en.wikipedia.org/wiki/Hybrid_sulfur_cycle

    Simplified diagram of the Hybrid sulfur cycle. The hybrid sulfur cycle (HyS) is a two-step water-splitting process intended to be used for hydrogen production.Based on sulfur oxidation and reduction, it is classified as a hybrid thermochemical cycle because it uses an electrochemical (instead of a thermochemical) reaction for one of the two steps.

  3. Hydrogen production - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_production

    Considering the industrial production of hydrogen, and using current best processes for water electrolysis (PEM or alkaline electrolysis) which have an effective electrical efficiency of 70–82%, [70] [71] [72] producing 1 kg of hydrogen (which has a specific energy of 143 MJ/kg or about 40 kWh/kg) requires 50–55 kWh of electricity.

  4. Water splitting - Wikipedia

    en.wikipedia.org/wiki/Water_splitting

    Usually, the electricity consumed is more valuable than the hydrogen produced, so this method has not been widely used. In contrast with low-temperature electrolysis, high-temperature electrolysis (HTE) of water converts more of the initial heat energy into chemical energy (hydrogen), potentially doubling efficiency to about 50%.

  5. Electrolysis of water - Wikipedia

    en.wikipedia.org/wiki/Electrolysis_of_water

    Considering the industrial production of hydrogen, and using current best processes for water electrolysis (PEM or alkaline electrolysis) which have an effective electrical efficiency of 70–80%, [68] [73] [74] producing 1 kg of hydrogen (which has a specific energy of 143 MJ/kg) requires 50–55 kW⋅h (180–200 MJ) of electricity.

  6. Copper–chlorine cycle - Wikipedia

    en.wikipedia.org/wiki/Copper–chlorine_cycle

    Simplified diagram of the Copper–Chlorine cycle. The copper–chlorine cycle (Cu–Cl cycle) is a four-step thermochemical cycle for the production of hydrogen. The Cu–Cl cycle is a hybrid process that employs both thermochemical and electrolysis steps. It has a maximum temperature requirement of about 530 degrees Celsius. [1]

  7. Hydrogen evolution reaction - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_evolution_reaction

    Due to the abundance of water on Earth, hydrogen production poses a potentially scalable process for fuel generation. This is an alternative to steam methane reforming [5] for hydrogen production, which has significant greenhouse gas emissions, and as such scientists are looking to improve and scale up electrolysis processes that have fewer ...

  8. High-temperature electrolysis - Wikipedia

    en.wikipedia.org/wiki/High-temperature_electrolysis

    High-temperature electrolysis schema. Decarbonization of Economy via hydrogen produced from HTE. High-temperature electrolysis (also HTE or steam electrolysis, or HTSE) is a technology for producing hydrogen from water at high temperatures or other products, such as iron or carbon nanomaterials, as higher energy lowers needed electricity to split molecules and opens up new, potentially better ...

  9. Solid oxide electrolyzer cell - Wikipedia

    en.wikipedia.org/wiki/Solid_oxide_electrolyzer_cell

    SOEC 60 cell stack. A solid oxide electrolyzer cell (SOEC) is a solid oxide fuel cell that runs in regenerative mode to achieve the electrolysis of water (and/or carbon dioxide) [1] by using a solid oxide, or ceramic, electrolyte to produce hydrogen gas [2] (and/or carbon monoxide) and oxygen.