enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prediction by partial matching - Wikipedia

    en.wikipedia.org/wiki/Prediction_by_partial_matching

    Prediction by partial matching (PPM) is an adaptive statistical data compression technique based on context modeling and prediction. PPM models use a set of previous symbols in the uncompressed symbol stream to predict the next symbol in the stream. PPM algorithms can also be used to cluster data into predicted groupings in cluster analysis.

  3. Quadratically constrained quadratic program - Wikipedia

    en.wikipedia.org/wiki/Quadratically_constrained...

    Popular solver with an API for several programming languages. Free for academics. MOSEK: A solver for large scale optimization with API for several languages (C++, java, .net, Matlab and python) TOMLAB: Supports global optimization, integer programming, all types of least squares, linear, quadratic and unconstrained programming for MATLAB.

  4. Euler–Maruyama method - Wikipedia

    en.wikipedia.org/wiki/Euler–Maruyama_method

    In Itô calculus, the Euler–Maruyama method (also simply called the Euler method) is a method for the approximate numerical solution of a stochastic differential equation (SDE). It is an extension of the Euler method for ordinary differential equations to stochastic differential equations named after Leonhard Euler and Gisiro Maruyama. The ...

  5. List of numerical-analysis software - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical-analysis...

    Shogun, an open-source large-scale machine-learning toolbox that provides several SVM implementations (like libSVM, SVMlight) under a common framework and interfaces to Octave, MATLAB, Python, R; Waffles is a free-software collection of command-line tools designed for scripting machine-learning operations in automated experiments and processes.

  6. Nelder–Mead method - Wikipedia

    en.wikipedia.org/wiki/Nelder–Mead_method

    Examples of simplices include a line segment in one-dimensional space, a triangle in two-dimensional space, a tetrahedron in three-dimensional space, and so forth. The method approximates a local optimum of a problem with n variables when the objective function varies smoothly and is unimodal .

  7. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    A comparison of the convergence of gradient descent with optimal step size (in green) and conjugate vector (in red) for minimizing a quadratic function associated with a given linear system. Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2).

  8. This anti-aging Estée Lauder SPF foundation is 40% off at ...

    www.aol.com/lifestyle/this-anti-aging-estee...

    Perfect for those who want natural-looking, medium coverage that evens skin tone and covers redness, dark spots and imperfections, Estée Lauder's Futurist formula is a great all-season foundation ...

  9. Helmert transformation - Wikipedia

    en.wikipedia.org/wiki/Helmert_transformation

    μ – scale factor, which is unitless; if it is given in ppm, it must be divided by 1,000,000 and added to 1. R – rotation matrix. Consists of three axes (small [clarification needed] rotations around each of the three coordinate axes) r x, r y, r z. The rotation matrix is an orthogonal matrix. The angles are given in either degrees or radians.