Search results
Results from the WOW.Com Content Network
Targeted delivery is believed to improve efficacy while reducing side-effects. When implementing a targeted release system, the following design criteria for the system must be taken into account: the drug properties, side-effects of the drugs, the route taken for the delivery of the drug, the targeted site, and the disease.
This therapy has shown to work best in conjunction with chemotherapeutics or other cancer therapies. [7] Although the EPR effect has been postulated to carry the nanoparticles and spread inside the cancer tissue, only a small percentage (0.7% median) of the total administered nanoparticle dose is usually able to reach a solid tumor. [8]
It can be directed to the location of cancer cells with sustained release behavior. Studies have also been done on gold nanoparticle responses to local near-infrared (NIR) light as a stimuli for drug release. In one study, gold nanoparticles functionalized with double-stranded DNA encapsulated with drug molecules, were irradiated with NIR light.
Development of solid lipid nanoparticles is one of the emerging fields of lipid nanotechnology (for a review on lipid nanotechnology, see [17]) with several potential applications in drug delivery, clinical medicine and research, as well as in other disciplines. Due to their unique size-dependent properties, lipid nanoparticles can possibly ...
SLNs can be made by replacing the liquid lipid oil used in the emulsion process with a solid lipid. In solid lipid nanoparticles, the drug molecules are dissolved in the particle's solid hydrophobic lipid core, this is called the drug payload, and it is surrounded by an aqueous solution. [6]
The overall drug consumption and side-effects may be lowered significantly by depositing the active pharmaceutical agent in the diseased region only and in no higher dose than needed. Targeted drug delivery is intended to reduce the side effects of drugs in tandem decreases in consumption and treatment expenses.
Traditionally, LNPs are composed of four indispensable lipid components: an ionizable amino lipid that aids in both escaping the endosomes and binding nucleic acids to the particle, an amphipathic phospholipid that promotes fusion with the target cell and endosomes, cholesterol to enhance nanoparticle stability, and a polyethylene glycol lipid ...
Lipid-based carriers include both liposomes and micelles. Examples of gold nanoparticles are gold nanoshells and nanocages . [ 3 ] Different types of nanomaterial being used in nanocarriers allows for hydrophobic and hydrophilic drugs to be delivered throughout the body. [ 5 ]