Search results
Results from the WOW.Com Content Network
Tay, Mareels and Moore (1998) defined settling time as "the time required for the response curve to reach and stay within a range of certain percentage (usually 5% or 2%) of the final value." [ 2 ] Mathematical detail
A circuit is designed to minimize rise time while containing distortion of the signal within acceptable limits. Overshoot represents a distortion of the signal. In circuit design, the goals of minimizing overshoot and of decreasing circuit rise time can conflict. The magnitude of overshoot depends on time through a phenomenon called "damping."
The settling time is the time for departures from final value to sink below some specified level, say 10% of final value. The dependence of settling time upon μ is not obvious, and the approximation of a two-pole system probably is not accurate enough to make any real-world conclusions about feedback dependence of settling time.
An RR tachograph is a graph of the numerical value of the RR-interval versus time. In the context of RR tachography, a Poincaré plot is a graph of RR(n) on the x-axis versus RR(n + 1) (the succeeding RR interval) on the y-axis, i.e. one takes a sequence of intervals and plots each interval against the following interval. [3]
that is, the sum of the angles from the open-loop zeros to the point (measured per zero w.r.t. a horizontal running through that zero) minus the angles from the open-loop poles to the point (measured per pole w.r.t. a horizontal running through that pole) has to be equal to , or 180 degrees.
Bode plot illustrating phase margin. In electronic amplifiers, the phase margin (PM) is the difference between the phase lag φ (< 0) and -180°, for an amplifier's output signal (relative to its input) at zero dB gain - i.e. unity gain, or that the output signal has the same amplitude as the input.
It is usually considered as a special case of the statistical method known as change detection or change point detection. Often, the step is small and the time series is corrupted by some kind of noise, and this makes the problem challenging because the step may be hidden by the noise. Therefore, statistical and/or signal processing algorithms ...
A pole-zero plot shows the location in the complex plane of the poles and zeros of the transfer function of a dynamic system, such as a controller, compensator, sensor, equalizer, filter, or communications channel. By convention, the poles of the system are indicated in the plot by an X while the zeros are indicated by a circle or O.