Search results
Results from the WOW.Com Content Network
Reverse bias is in the direction of little or no current flow; Negative charge carriers (electrons) can easily flow through the junction from n to p but not from p to n, and the reverse is true for positive charge carriers (Electron hole). When the p–n junction is forward-biased, charge carriers flow freely due to the reduction in energy ...
A current–voltage characteristic or I–V curve (current–voltage curve) is a relationship, typically represented as a chart or graph, between the electric current through a circuit, device, or material, and the corresponding voltage, or potential difference, across it.
In most diodes, a white or black painted band identifies the cathode into which electrons will flow when the diode is conducting. Electron flow is the reverse of conventional current flow. [2] [3] [4] A diode is a two-terminal electronic component that conducts current primarily in one direction (asymmetric conductance).
A p–n diode is a type of semiconductor diode based upon the p–n junction. The diode conducts current in only one direction, and it is made by joining a p-type semiconducting layer to an n-type semiconducting layer. Semiconductor diodes have multiple uses including rectification of alternating current to direct current, in the detection of ...
When we assume that is small, we obtain = and the Shockley ideal diode equation. The small current that flows under high reverse bias is then the result of thermal generation of electron–hole pairs in the layer. The electrons then flow to the n terminal, and the holes to the p terminal.
A semiconductor diode is a device typically made from a single p–n junction.At the junction of a p-type and an n-type semiconductor, there forms a depletion region where current conduction is inhibited by the lack of mobile charge carriers.
Illustration of the "reference directions" of the current (), voltage (), and power () variables used in the passive sign convention.If positive current is defined as flowing into the device terminal which is defined to be positive voltage, then positive power (big arrow) given by the equation = represents electric power flowing into the device, and negative power represents power flowing out.
The Shockley diode equation relates the diode current of a p-n junction diode to the diode voltage .This relationship is the diode I-V characteristic: = (), where is the saturation current or scale current of the diode (the magnitude of the current that flows for negative in excess of a few , typically 10 −12 A).