Search results
Results from the WOW.Com Content Network
A description of linear interpolation can be found in the ancient Chinese mathematical text called The Nine Chapters on the Mathematical Art (九章算術), [1] dated from 200 BC to AD 100 and the Almagest (2nd century AD) by Ptolemy. The basic operation of linear interpolation between two values is commonly used in computer graphics.
This process yields p 0,4 (x), the value of the polynomial going through the n + 1 data points (x i, y i) at the point x. This algorithm needs O(n 2) floating point operations to interpolate a single point, and O(n 3) floating point operations to interpolate a polynomial of degree n.
The simplest interpolation method is to locate the nearest data value, and assign the same value. In simple problems, this method is unlikely to be used, as linear interpolation (see below) is almost as easy, but in higher-dimensional multivariate interpolation, this could be a favourable choice for its speed and simplicity.
) and the interpolation problem consists of yielding values at arbitrary points (,,, … ) {\displaystyle (x,y,z,\dots )} . Multivariate interpolation is particularly important in geostatistics , where it is used to create a digital elevation model from a set of points on the Earth's surface (for example, spot heights in a topographic survey or ...
In mathematics, trigonometric interpolation is interpolation with trigonometric polynomials. Interpolation is the process of finding a function which goes through some given data points . For trigonometric interpolation, this function has to be a trigonometric polynomial, that is, a sum of sines and cosines of given periods.
Example of bilinear interpolation on the unit square with the z values 0, 1, 1 and 0.5 as indicated. Interpolated values in between represented by color. In mathematics, bilinear interpolation is a method for interpolating functions of two variables (e.g., x and y) using repeated linear interpolation.
Trilinear interpolation is the extension of linear interpolation, which operates in spaces with dimension =, and bilinear interpolation, which operates with dimension =, to dimension =. These interpolation schemes all use polynomials of order 1, giving an accuracy of order 2, and it requires 2 D = 8 {\displaystyle 2^{D}=8} adjacent pre-defined ...
For example, given a = f(x) = a 0 x 0 + a 1 x 1 + ··· and b = g(x) = b 0 x 0 + b 1 x 1 + ···, the product ab is a specific value of W(x) = f(x)g(x). One may easily find points along W(x) at small values of x, and interpolation based on those points will yield the terms of W(x) and the specific product ab. As fomulated in Karatsuba ...