Search results
Results from the WOW.Com Content Network
Supersymmetry has also been applied to high energy physics, where a supersymmetric extension of the Standard Model is a possible candidate for physics beyond the Standard Model. However, no supersymmetric extensions of the Standard Model have been experimentally verified.
The first relation between supersymmetry and stochastic dynamics was established in two papers in 1979 and 1982 by Giorgio Parisi and Nicolas Sourlas, [1] [2] who demonstrated that the application of the BRST gauge fixing procedure to Langevin SDEs, i.e., to SDEs with linear phase spaces, gradient flow vector fields, and additive noises, results in N=2 supersymmetric models.
In D=4 spacetime dimensions, N=4 is the maximal number of supersymmetries or supersymmetry charges. [1] SYM theory is a toy theory based on Yang–Mills theory; it does not model the real world, but it is useful because it can act as a proving ground for approaches for attacking problems in more complex theories. [2]
Anomaly-mediated supersymmetry breaking is a special type of gravity mediated supersymmetry breaking that results in supersymmetry breaking being communicated to the supersymmetric Standard Model through the conformal anomaly. [17] [18] Requiring stop squarks below 2 TeV, the maximum Higgs boson mass predicted is just 121.0GeV. [16]
In supersymmetry, 4D = global supersymmetry is the theory of global supersymmetry in four dimensions with a single supercharge.It consists of an arbitrary number of chiral and vector supermultiplets whose possible interactions are strongly constrained by supersymmetry, with the theory primarily fixed by three functions: the Kähler potential, the superpotential, and the gauge kinetic matrix.
It is a special case of 4D N = 1 global supersymmetry. Super Yang–Mills was studied by Julius Wess and Bruno Zumino in which they demonstrated the supergauge-invariance of the theory and wrote down its action, [1] alongside the action of the Wess–Zumino model, another early supersymmetric field theory.
Supersymmetry extends the Standard Model by adding another class of symmetries to the Lagrangian. These symmetries exchange fermionic particles with bosonic ones. Such a symmetry predicts the existence of supersymmetric particles, abbreviated as sparticles, which include the sleptons, squarks, neutralinos and charginos.
To make progress on these problems, physicists developed supersymmetric quantum mechanics, an application of the supersymmetry superalgebra to quantum mechanics as opposed to quantum field theory. It was hoped that studying SUSY's consequences in this simpler setting would lead to new understanding; remarkably, the effort created new areas of ...