enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Poset game - Wikipedia

    en.wikipedia.org/wiki/Poset_game

    In combinatorial game theory, poset games are mathematical games of strategy, generalizing many well-known games such as Nim and Chomp. [1] In such games, two players start with a poset (a partially ordered set ), and take turns choosing one point in the poset, removing it and all points that are greater.

  3. Poset topology - Wikipedia

    en.wikipedia.org/wiki/Poset_topology

    In mathematics, the poset topology associated to a poset (S, ≤) is the Alexandrov topology (open sets are upper sets) on the poset of finite chains of (S, ≤), ordered by inclusion. Let V be a set of vertices. An abstract simplicial complex Δ is a set of finite sets of vertices, known as faces , such that

  4. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    As another example, consider the positive integers, ordered by divisibility: 1 is a least element, as it divides all other elements; on the other hand this poset does not have a greatest element. This partially ordered set does not even have any maximal elements, since any g divides for instance 2 g , which is distinct from it, so g is not maximal.

  5. Graded poset - Wikipedia

    en.wikipedia.org/wiki/Graded_poset

    A power set, partially ordered by inclusion, with rank defined as number of elements, forms a graded poset. In mathematics, in the branch of combinatorics, a graded poset is a partially-ordered set (poset) P equipped with a rank function ρ from P to the set N of all natural numbers. ρ must satisfy the following two properties:

  6. Differential poset - Wikipedia

    en.wikipedia.org/wiki/Differential_poset

    In mathematics, a differential poset is a partially ordered set (or poset for short) satisfying certain local properties. (The formal definition is given below.) This family of posets was introduced by Stanley (1988) as a generalization of Young's lattice (the poset of integer partitions ordered by inclusion), many of whose combinatorial properties are shared by all differential posets.

  7. Bounded complete poset - Wikipedia

    en.wikipedia.org/wiki/Bounded_complete_poset

    In the mathematical field of order theory, a partially ordered set is bounded complete if all of its subsets that have some upper bound also have a least upper bound.Such a partial order can also be called consistently or coherently complete (Visser 2004, p. 182), since any upper bound of a set can be interpreted as some consistent (non-contradictory) piece of information that extends all the ...

  8. Directed set - Wikipedia

    en.wikipedia.org/wiki/Directed_set

    A directed subset of a poset is not required to be downward closed; a subset of a poset is directed if and only if its downward closure is an ideal. While the definition of a directed set is for an "upward-directed" set (every pair of elements has an upper bound), it is also possible to define a downward-directed set in which every pair of ...

  9. Deviation of a poset - Wikipedia

    en.wikipedia.org/wiki/Deviation_of_a_poset

    The poset of positive integers has deviation 0: every descending chain is finite, so the defining condition for deviation is vacuously true. However, its opposite poset has deviation 1. Let k be an algebraically closed field and consider the poset of ideals of the polynomial ring k[x] in one variable. Since the deviation of this poset is the ...

  1. Related searches define poset with example words worksheet answers list of skills and strategies

    ranked poset meaningpartially ordered set poset
    graded poset function