Search results
Results from the WOW.Com Content Network
In statistics, the restricted (or residual, or reduced) maximum likelihood (REML) approach is a particular form of maximum likelihood estimation that does not base estimates on a maximum likelihood fit of all the information, but instead uses a likelihood function calculated from a transformed set of data, so that nuisance parameters have no effect.
Models that are over-parameterised (over-fitted) would tend to give small residuals for observations included in the model-fitting but large residuals for observations that are excluded. The PRESS statistic has been extensively used in lazy learning and locally linear learning to speed-up the assessment and the selection of the neighbourhood size.
An illustrative plot of a fit to data (green curve in top panel, data in red) plus a plot of residuals: red points in bottom plot. Dashed curve in bottom panel is a straight line fit to the residuals. If the functional form is correct then there should be little or no trend to the residuals - as seen here.
In regression analysis, the distinction between errors and residuals is subtle and important, and leads to the concept of studentized residuals. Given an unobservable function that relates the independent variable to the dependent variable – say, a line – the deviations of the dependent variable observations from this function are the ...
To have a lack-of-fit sum of squares that differs from the residual sum of squares, one must observe more than one y-value for each of one or more of the x-values. One then partitions the "sum of squares due to error", i.e., the sum of squares of residuals, into two components:
In statistics, DFFIT and DFFITS ("difference in fit(s)") are diagnostics meant to show how influential a point is in a linear regression, first proposed in 1980. [ 1 ] DFFIT is the change in the predicted value for a point, obtained when that point is left out of the regression:
When this is not the case, the errors are said to be heteroskedastic, or to have heteroskedasticity, and this behaviour will be reflected in the residuals ^ estimated from a fitted model. Heteroskedasticity-consistent standard errors are used to allow the fitting of a model that does contain heteroskedastic residuals.
The analysis was performed in R using software made available by Venables and Ripley (2002). The two regression lines appear to be very similar (and this is not unusual in a data set of this size). However, the advantage of the robust approach comes to light when the estimates of residual scale are considered.