Ad
related to: normal distribution probability theory examples statistics questions and solutions
Search results
Results from the WOW.Com Content Network
In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable.The general form of its probability density function is [2] [3] = ().
The Ewens's sampling formula is a probability distribution on the set of all partitions of an integer n, arising in population genetics. The Balding–Nichols model; The multinomial distribution, a generalization of the binomial distribution. The multivariate normal distribution, a generalization of the normal distribution.
Though there are many approximate solutions (such as Welch's t-test), the problem continues to attract attention [4] as one of the classic problems in statistics. Multiple comparisons: There are various ways to adjust p-values to compensate for the simultaneous or sequential testing of hypotheses. Of particular interest is how to simultaneously ...
Students of statistics and probability theory sometimes develop misconceptions about the normal distribution, ideas that may seem plausible but are mathematically untrue. For example, it is sometimes mistakenly thought that two linearly uncorrelated, normally distributed random variables must be statistically independent.
In statistics, the Q-function is the tail distribution function of the standard normal distribution. [ 1 ] [ 2 ] In other words, Q ( x ) {\displaystyle Q(x)} is the probability that a normal (Gaussian) random variable will obtain a value larger than x {\displaystyle x} standard deviations.
As an example, the normal distribution is a family of similarly-shaped distributions parametrized by their mean and their variance. [2] [3] In decision theory, two-moment decision models can be applied when the decision-maker is faced with random variables drawn from a location-scale family of probability distributions. [citation needed]
In probability theory, calculation of the sum of normally distributed random variables is an instance of the arithmetic of random variables. This is not to be confused with the sum of normal distributions which forms a mixture distribution.
Stein's method is a general method in probability theory to obtain bounds on the distance between two probability distributions with respect to a probability metric.It was introduced by Charles Stein, who first published it in 1972, [1] to obtain a bound between the distribution of a sum of -dependent sequence of random variables and a standard normal distribution in the Kolmogorov (uniform ...
Ad
related to: normal distribution probability theory examples statistics questions and solutions