enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Wheat and chessboard problem - Wikipedia

    en.wikipedia.org/wiki/Wheat_and_chessboard_problem

    The exercise of working through this problem may be used to explain and demonstrate exponents and the quick growth of exponential and geometric sequences. It can also be used to illustrate sigma notation. When expressed as exponents, the geometric series is: 2 0 + 2 1 + 2 2 + 2 3 + ... and so forth, up to 2 63. The base of each exponentiation ...

  3. Geometric progression - Wikipedia

    en.wikipedia.org/wiki/Geometric_progression

    For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with a common ratio of 1/2. Examples of a geometric sequence are powers r k of a fixed non-zero number r, such as 2 k and 3 k. The general form of a geometric sequence is

  4. Dividing a circle into areas - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_circle_into_areas

    The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.

  5. Vandermonde matrix - Wikipedia

    en.wikipedia.org/wiki/Vandermonde_matrix

    As explained above in Applications, the polynomial interpolation problem for () = + + + + satisfying () =, …, = is equivalent to the matrix equation =, which has the unique solution =. There are other known formulas which solve the interpolation problem, which must be equivalent to the unique a = V − 1 y {\displaystyle a=V^{-1}y} , so they ...

  6. The Ancient Tradition of Geometric Problems - Wikipedia

    en.wikipedia.org/wiki/The_Ancient_Tradition_of...

    The Ancient Tradition of Geometric Problems studies the three classical problems of circle-squaring, cube-doubling, and angle trisection throughout the history of Greek mathematics, [1] [2] also considering several other problems studied by the Greeks in which a geometric object with certain properties is to be constructed, in many cases through transformations to other construction problems. [2]

  7. Kepler triangle - Wikipedia

    en.wikipedia.org/wiki/Kepler_triangle

    Conversely, in any right triangle whose squared edge lengths are in geometric progression with any ratio , the Pythagorean theorem implies that this ratio obeys the identity = +. Therefore, the ratio must be the unique positive solution to this equation, the golden ratio, and the triangle must be a Kepler triangle.

  8. Heronian triangle - Wikipedia

    en.wikipedia.org/wiki/Heronian_triangle

    There is a unique sequence of Heronian triangles that are "almost equilateral" because the three sides are of the form n − 1, n, n + 1. A method for generating all solutions to this problem based on continued fractions was described in 1864 by Edward Sang, [29] and in 1880 Reinhold Hoppe gave a closed-form expression for the solutions. [30]

  9. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.