enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    Aerobic respiration requires oxygen (O 2) in order to create ATP. Although carbohydrates, fats and proteins are consumed as reactants, aerobic respiration is the preferred method of pyruvate production in glycolysis, and requires pyruvate to the mitochondria in order to be oxidized by the citric acid cycle.

  3. Cytochrome c oxidase - Wikipedia

    en.wikipedia.org/wiki/Cytochrome_c_oxidase

    4 Fe 2+ – cytochrome c + 4 H + + O 2 → 4 Fe 3+ – cytochrome c + 2 H 2 O ΔG o ' = - 218 kJ/mol, E o ' = +565 mV. Two electrons are passed from two cytochrome c's, through the Cu A and cytochrome a sites to the cytochrome a 3 –Cu B binuclear center, reducing the metals to the Fe 2+ form and Cu +.

  4. Phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Phosphorylation

    Phosphorylation is essential to the processes of both anaerobic and aerobic respiration, which involve the production of adenosine triphosphate (ATP), the "high-energy" exchange medium in the cell. During aerobic respiration, ATP is synthesized in the mitochondrion by addition of a third phosphate group to adenosine diphosphate (ADP) in a ...

  5. Metabolic pathway - Wikipedia

    en.wikipedia.org/wiki/Metabolic_pathway

    The glyoxylate shunt pathway is an alternative to the tricarboxylic acid (TCA) cycle, for it redirects the pathway of TCA to prevent full oxidation of carbon compounds, and to preserve high energy carbon sources as future energy sources. This pathway occurs only in plants and bacteria and transpires in the absence of glucose molecules.

  6. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    In their cardiac mitochondria, the reversing of Complex V, [103] the usage of ATP, and the build-up of succinate are all prevented during anoxia. [95] Crucian carps (Carassius carassius) also overwinter in frozen ponds and show no loss membrane potential in their cardiac mitochondria during anoxia, but this relies on complexes I and III to be ...

  7. Respiratory complex I - Wikipedia

    en.wikipedia.org/wiki/Respiratory_complex_I

    NAD + to NADH. FMN to FMNH 2. CoQ to CoQH 2.. Complex I is the first enzyme of the mitochondrial electron transport chain.There are three energy-transducing enzymes in the electron transport chain - NADH:ubiquinone oxidoreductase (complex I), Coenzyme Q – cytochrome c reductase (complex III), and cytochrome c oxidase (complex IV). [1]

  8. Carbohydrate catabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_catabolism

    These carbon molecules are oxidized into NADH and ATP. For the glucose molecule to oxidize into pyruvate, an input of ATP molecules is required. This is known as the investment phase, in which a total of two ATP molecules are consumed. At the end of glycolysis, the total yield of ATP is four molecules, but the net gain is two ATP molecules.

  9. Chemiosmosis - Wikipedia

    en.wikipedia.org/wiki/Chemiosmosis

    In mitochondria, energy released by the electron transport chain is used to move protons from the mitochondrial matrix (N side) to the intermembrane space (P side). Moving the protons out of the mitochondrion creates a lower concentration of positively charged protons inside it, resulting in excess negative charge on the inside of the membrane.