Search results
Results from the WOW.Com Content Network
A parabolic segment is the region bounded by a parabola and line. To find the area of a parabolic segment, Archimedes considers a certain inscribed triangle. The base of this triangle is the given chord of the parabola, and the third vertex is the point on the parabola such that the tangent to the parabola at that point is parallel to the chord.
Archimedes used the method of exhaustion to compute the area inside a circle. Archimedes used the method of exhaustion as a way to compute the area inside a circle by filling the circle with a sequence of polygons with an increasing number of sides and a corresponding increase in area.
The area of the surface of a sphere is equal to quadruple the area of a great circle of this sphere. The area of a segment of the parabola cut from it by a straight line is 4/3 the area of the triangle inscribed in this segment. For the proof of the results Archimedes used the Method of exhaustion of Eudoxus.
In Quadrature of the Parabola, Archimedes proved that the area enclosed by a parabola and a straight line is 4 / 3 times the area of a corresponding inscribed triangle as shown in the figure at right. He expressed the solution to the problem as an infinite geometric series with the common ratio 1 / 4 :
3rd century BC - Archimedes develops a concept of the indivisibles—a precursor to infinitesimals—allowing him to solve several problems using methods now termed as integral calculus. Archimedes also derives several formulae for determining the area and volume of various solids including sphere, cone, paraboloid and hyperboloid. [2]
The Archimedean spiral (also known as Archimedes' spiral, the arithmetic spiral) is a spiral named after the 3rd-century BC Greek mathematician Archimedes. The term Archimedean spiral is sometimes used to refer to the more general class of spirals of this type (see below), in contrast to Archimedes' spiral (the specific arithmetic spiral of ...
The ratio of the volume of a sphere to the volume of its circumscribed cylinder is 2:3, as was determined by Archimedes. The principal formulae derived in On the Sphere and Cylinder are those mentioned above: the surface area of the sphere, the volume of the contained ball, and surface area and volume of the cylinder.
Archimedes used the method of exhaustion to compute the area inside a circle by finding the area of regular polygons with more and more sides. This was an early but informal example of a limit , one of the most basic concepts in mathematical analysis.