enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kruskal–Wallis test - Wikipedia

    en.wikipedia.org/wiki/KruskalWallis_test

    Difference between ANOVA and KruskalWallis test with ranks. The KruskalWallis test by ranks, KruskalWallis test (named after William Kruskal and W. Allen Wallis), or one-way ANOVA on ranks is a non-parametric statistical test for testing whether samples originate from the same distribution. [1] [2] [3] It is used for comparing two or ...

  3. One-way analysis of variance - Wikipedia

    en.wikipedia.org/wiki/One-way_analysis_of_variance

    In statistics, one-way analysis of variance (or one-way ANOVA) is a technique to compare whether two or more samples' means are significantly different (using the F distribution). This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way". [1]

  4. Analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_variance

    There are some alternatives to conventional one-way analysis of variance, e.g.: Welch's heteroscedastic F test, Welch's heteroscedastic F test with trimmed means and Winsorized variances, Brown-Forsythe test, Alexander-Govern test, James second order test and Kruskal-Wallis test, available in onewaytests R

  5. ANOVA on ranks - Wikipedia

    en.wikipedia.org/wiki/ANOVA_on_ranks

    In statistics, one purpose for the analysis of variance (ANOVA) is to analyze differences in means between groups. The test statistic, F, assumes independence of observations, homogeneous variances, and population normality. ANOVA on ranks is a statistic designed for situations when the normality assumption has been violated.

  6. Nonparametric statistics - Wikipedia

    en.wikipedia.org/wiki/Nonparametric_statistics

    Kendall's W: a measure between 0 and 1 of inter-rater agreement. Kolmogorov–Smirnov test: tests whether a sample is drawn from a given distribution, or whether two samples are drawn from the same distribution. KruskalWallis one-way analysis of variance by ranks: tests whether > 2 independent samples are drawn from the same distribution.

  7. Van der Waerden test - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waerden_test

    The most common non-parametric test for the one-factor model is the Kruskal-Wallis test. The Kruskal-Wallis test is based on the ranks of the data. The advantage of the Van Der Waerden test is that it provides the high efficiency of the standard ANOVA analysis when the normality assumptions are in fact satisfied, but it also provides the ...

  8. Talk:Kruskal–Wallis test - Wikipedia

    en.wikipedia.org/wiki/Talk:KruskalWallis_test

    The null hypothesis is that all populations have the same distribution. Kruskal-Wallis assumes that the errors in observations are i.i.d. (in the same way that parametric ANOVA assumes i.i.d. (,) errors; Kruskal-Wallis drops only the normality assumption). The test is designed to detect simple shifts in location (mean or median - same thing ...

  9. Friedman test - Wikipedia

    en.wikipedia.org/wiki/Friedman_test

    The Friedman test is used for one-way repeated measures analysis of variance by ranks. In its use of ranks it is similar to the KruskalWallis one-way analysis of variance by ranks. The Friedman test is widely supported by many statistical software packages.