enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Affinity propagation - Wikipedia

    en.wikipedia.org/wiki/Affinity_propagation

    In statistics and data mining, affinity propagation (AP) is a clustering algorithm based on the concept of "message passing" between data points. [1] Unlike clustering algorithms such as k-means or k-medoids, affinity propagation does not require the number of clusters to be determined or estimated before running the algorithm.

  3. CURE algorithm - Wikipedia

    en.wikipedia.org/wiki/CURE_algorithm

    CURE (no. of points,k) Input : A set of points S Output : k clusters For every cluster u (each input point), in u.mean and u.rep store the mean of the points in the cluster and a set of c representative points of the cluster (initially c = 1 since each cluster has one data point).

  4. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters).

  5. Soot (software) - Wikipedia

    en.wikipedia.org/wiki/Soot_(software)

    Jimple is an intermediate representation of a Java program designed to be easier to optimize than Java bytecode. It is typed, has a concrete syntax and is based on three-address code. Jimple includes only 15 different operations, thus simplifying flow analysis. By contrast, java bytecode includes over 200 different operations. [5] [6]

  6. OPTICS algorithm - Wikipedia

    en.wikipedia.org/wiki/OPTICS_algorithm

    It is a 2D plot, with the ordering of the points as processed by OPTICS on the x-axis and the reachability distance on the y-axis. Since points belonging to a cluster have a low reachability distance to their nearest neighbor, the clusters show up as valleys in the reachability plot. The deeper the valley, the denser the cluster.

  7. Automatic clustering algorithms - Wikipedia

    en.wikipedia.org/wiki/Automatic_Clustering...

    Automatic clustering algorithms are algorithms that can perform clustering without prior knowledge of data sets. In contrast with other cluster analysis techniques, automatic clustering algorithms can determine the optimal number of clusters even in the presence of noise and outlier points. [1] [needs context]

  8. Mallet (software project) - Wikipedia

    en.wikipedia.org/wiki/Mallet_(software_project)

    MALLET is an integrated collection of Java code useful for statistical natural language processing, document classification, cluster analysis, information extraction, topic modeling and other machine learning applications to text.

  9. Fuzzy clustering - Wikipedia

    en.wikipedia.org/wiki/Fuzzy_clustering

    Fuzzy clustering (also referred to as soft clustering or soft k-means) is a form of clustering in which each data point can belong to more than one cluster.. Clustering or cluster analysis involves assigning data points to clusters such that items in the same cluster are as similar as possible, while items belonging to different clusters are as dissimilar as possible.