Search results
Results from the WOW.Com Content Network
A well-defined, non-empty sample space is one of three components in a probabilistic model (a probability space). The other two basic elements are a well-defined set of possible events (an event space), which is typically the power set of S {\displaystyle S} if S {\displaystyle S} is discrete or a σ-algebra on S {\displaystyle S} if it is ...
These two non-atomic examples are closely related: a sequence (x 1, x 2, ...) ∈ {0,1} ∞ leads to the number 2 −1 x 1 + 2 −2 x 2 + ⋯ ∈ [0,1]. This is not a one-to-one correspondence between {0,1} ∞ and [0,1] however: it is an isomorphism modulo zero , which allows for treating the two probability spaces as two forms of the same ...
In probability experiments on a finite sample space with a non-zero probability for each outcome, there is no difference between almost surely and surely (since having a probability of 1 entails including all the sample points); however, this distinction becomes important when the sample space is an infinite set, [2] because an infinite set can ...
In probability theory and statistics, the discrete uniform distribution is a symmetric probability distribution wherein each of some finite whole number n of outcome values are equally likely to be observed. Thus every one of the n outcome values has equal probability 1/n. Intuitively, a discrete uniform distribution is "a known, finite number ...
In some sample spaces, it is reasonable to estimate or assume that all outcomes in the space are equally likely (that they occur with equal probability). For example, when tossing an ordinary coin, one typically assumes that the outcomes "head" and "tail" are equally likely to occur.
In statistics, a sampling distribution or finite-sample distribution is the probability distribution of a given random-sample-based statistic.If an arbitrarily large number of samples, each involving multiple observations (data points), were separately used in order to compute one value of a statistic (such as, for example, the sample mean or sample variance) for each sample, then the sampling ...
A probability distribution is a mathematical description of the probabilities of events, subsets of the sample space. The sample space, often represented in notation by , is the set of all possible outcomes of a random phenomenon being observed. The sample space may be any set: a set of real numbers, a set of descriptive labels, a set of ...
That is, the probability function f(x) lies between zero and one for every value of x in the sample space Ω, and the sum of f(x) over all values x in the sample space Ω is equal to 1. An event is defined as any subset of the sample space . The probability of the event is defined as