Ads
related to: spherical segment geometry
Search results
Results from the WOW.Com Content Network
A spherical segment Pair of parallel planes intersecting a sphere forming a spherical segment (i.e., a spherical frustum) Terminology for spherical segments. In geometry, a spherical segment is the solid defined by cutting a sphere or a ball with a pair of parallel planes. It can be thought of as a spherical cap with the top truncated, and so ...
However, spherical geometry was not considered a full-fledged non-Euclidean geometry sufficient to resolve the ancient problem of whether the parallel postulate is a logical consequence of the rest of Euclid's axioms of plane geometry, because it requires another axiom to be modified.
In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane. It is also a spherical segment of one base, i.e., bounded by a single plane. If the plane passes through the center of the sphere (forming a great circle ), so that the height of the cap is equal to the radius of the sphere, the spherical ...
Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are great circles. Spherical trigonometry is of great importance for calculations in astronomy, geodesy, and ...
The spherical coordinates of a point P then are defined as follows: The radius or radial distance is the Euclidean distance from the origin O to P. The inclination (or polar angle) is the signed angle from the zenith reference direction to the line segment OP. (Elevation may be used as the polar angle instead of inclination; see below.)
In geometry, a spherical sector, [1] also known as a spherical cone, [2] is a portion of a sphere or of a ball defined by a conical boundary with apex at the center of the sphere. It can be described as the union of a spherical cap and the cone formed by the center of the sphere and the base of the cap.
This page was last edited on 17 September 2019, at 05:43 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
The classical convex polytopes may be considered tessellations, or tilings, of spherical space. Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less.
Ads
related to: spherical segment geometry