Search results
Results from the WOW.Com Content Network
They have no directional characteristic. They are all short-range forces and hence only interactions between the nearest particles need to be considered (instead of all the particles). Van der Waals attraction is greater if the molecules are closer. Van der Waals forces are independent of temperature except for dipole-dipole interactions.
The line of action is shown as the vertical dotted line. It extends in both directions relative to the force vector, but is most useful where it defines the moment arm. In physics, the line of action (also called line of application) of a force (F →) is a geometric representation of how the
London dispersion forces (LDF, also known as dispersion forces, London forces, instantaneous dipole–induced dipole forces, fluctuating induced dipole bonds [1] or loosely as van der Waals forces) are a type of intermolecular force acting between atoms and molecules that are normally electrically symmetric; that is, the electrons are ...
The theory posits that the force of gravity is the result of tiny particles (corpuscles) moving at high speed in all directions, throughout the universe.The intensity of the flux of particles is assumed to be the same in all directions, so an isolated object A is struck equally from all sides, resulting in only an inward-directed pressure but no net directional force (P1).
The induced dipole forces appear from the induction (also termed polarization), which is the attractive interaction between a permanent multipole on one molecule with an induced (by the former di/multi-pole) 31 on another. [12] [13] [14] This interaction is called the Debye force, named after Peter J. W. Debye.
In physics, the Coriolis force is an inertial (or fictitious) force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motion of the object. In one with anticlockwise (or counterclockwise) rotation, the force ...
Mechanical explanations of gravitation (or kinetic theories of gravitation) are attempts to explain the action of gravity by aid of basic mechanical processes, such as pressure forces caused by pushes, without the use of any action at a distance. These theories were developed from the 16th until the 19th century in connection with the aether.
In mechanics, the net force is the sum of all the forces acting on an object. For example, if two forces are acting upon an object in opposite directions, and one force is greater than the other, the forces can be replaced with a single force that is the difference of the greater and smaller force. That force is the net force. [1]