Search results
Results from the WOW.Com Content Network
A cube is a special case of rectangular cuboid in which the edges are equal in length. [1] Like other cuboids, every face of a cube has four vertices, each of which connects with three congruent lines. These edges form square faces, making the dihedral angle of a cube between every two adjacent squares being the interior angle of a square, 90 ...
For example, any of the six squares that bound a cube is a face of the cube. Sometimes "face" is also used to refer to the 2-dimensional features of a 4-polytope. With this meaning, the 4-dimensional tesseract has 24 square faces, each sharing two of 8 cubic cells.
A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square.
These six planes of projection intersect each other, forming a box around the object, the most uniform construction of which is a cube; traditionally, these six views are presented together by first projecting the 3D object onto the 2D faces of a cube, and then "unfolding" the faces of the cube such that all of them are contained within the ...
Note that with the cube (see image) the perimeter of the resulting 2D drawing is a perfect regular hexagon: all the black lines have equal length and all the cube's faces are the same area. Isometric graph paper can be placed under a normal piece of drawing paper to help achieve the effect without calculation.
In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices, 80 edges, 80 square faces, 40 cubic cells, and 10 tesseract 4-faces. It is represented by Schläfli symbol {4,3,3,3} or {4,3 3 }, constructed as 3 tesseracts, {4,3,3}, around each cubic ridge .
5-cube, Rectified 5-cube, 5-cube, Truncated 5-cube, Cantellated 5-cube, Runcinated 5-cube, Stericated 5-cube; 5-orthoplex, Rectified 5-orthoplex, Truncated 5-orthoplex, Cantellated 5-orthoplex, Runcinated 5-orthoplex; Prismatic uniform 5-polytope For each polytope of dimension n, there is a prism of dimension n+1. [citation needed]
C 4v, [4], (*422): if one face has a different color (or two opposite faces have colors different from each other and from the other four), the cube has 8 isometries, like a square has in 2D. D 2h , [2,2], (*222): if opposite faces have the same colors, different for each set of two, the cube has 8 isometries, like a cuboid .