Search results
Results from the WOW.Com Content Network
The plotted line represents the variation of instantaneous voltage (or current) with respect to time. This cycle repeats with a frequency that depends on the power system. In electrical engineering, three-phase electric power systems have at least three conductors carrying alternating voltages that are offset in time by one-third of the period ...
Spectral layout drawing of random small-world network. For comparison, the same graph plotted as spring graph drawing. Spectral layout is a class of algorithm for drawing graphs. The layout uses the eigenvectors of a matrix, such as the Laplace matrix of the graph, as Cartesian coordinates of the graph's vertices.
A typical one-line diagram with annotated power flows. Red boxes represent circuit breakers, grey lines represent three-phase bus and interconnecting conductors, the orange circle represents an electric generator, the green spiral is an inductor, and the three overlapping blue circles represent a double-wound transformer with a tertiary winding.
The power diagram of a set of n circles C i is a partition of the plane into n regions R i (called cells), such that a point P belongs to R i whenever circle C i is the circle minimizing the power of P. [2] [3] [4] The radical axis of two intersecting circles. The power diagram of the two circles is the partition of the plane into two ...
The upper half of this diagram shows the frequency spectrum of a modern switching power supply which employs spread spectrum. The lower half is a waterfall plot showing the variation of the frequency spectrum over time during the power supply's heating up period. Spectrogram and 3 styles of waterfall plot of a whistled sequence of 3 notes vs time
The circle diagram (also known as Heyland diagram or Heyland circle) is the graphical representation of the performance of the electrical machine [1] [2] [3] drawn in terms of the locus of the machine's input voltage and current. [4] It was first conceived by Alexander Heyland in 1894 and Bernhard Arthur Behrend in 1895.
Mathematically, for the spectral power distribution of a radiant exitance or irradiance one may write: =where M(λ) is the spectral irradiance (or exitance) of the light (SI units: W/m 2 = kg·m −1 ·s −3); Φ is the radiant flux of the source (SI unit: watt, W); A is the area over which the radiant flux is integrated (SI unit: square meter, m 2); and λ is the wavelength (SI unit: meter, m).
A 'signal space diagram' is an ideal constellation diagram showing the correct position of the point representing each symbol. After passing through a communication channel, due to electronic noise or distortion added to the signal, the amplitude and phase received by the demodulator may differ from the correct value for the symbol. When ...