Search results
Results from the WOW.Com Content Network
A map of the 24 permutations and the 23 swaps used in Heap's algorithm permuting the four letters A (amber), B (blue), C (cyan) and D (dark red) Wheel diagram of all permutations of length = generated by Heap's algorithm, where each permutation is color-coded (1=blue, 2=green, 3=yellow, 4=red).
In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations).For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.
Combinations and permutations in the mathematical sense are described in several articles. Described together, in-depth: Twelvefold way; Explained separately in a more accessible way: Combination; Permutation; For meanings outside of mathematics, please see both words’ disambiguation pages: Combination (disambiguation) Permutation ...
A k-combination of a set S is a k-element subset of S: the elements of a combination are not ordered. Ordering the k-combinations of S in all possible ways produces the k-permutations of S. The number of k-combinations of an n-set, C(n,k), is therefore related to the number of k-permutations of n by: (,) = (,) (,) = _! =!
In computer science, all-pairs testing or pairwise testing is a combinatorial method of software testing that, for each pair of input parameters to a system (typically, a software algorithm), tests all possible discrete combinations of those parameters.
Two examples of this type of problem are counting combinations and counting permutations. More generally, given an infinite collection of finite sets S i indexed by the natural numbers, enumerative combinatorics seeks to describe a counting function which counts the number of objects in S n for each n.
By the definition of the lexicographic ordering, two k-combinations that differ in their largest element c k will be ordered according to the comparison of those largest elements, from which it follows that all combinations with a fixed value of their largest element are contiguous in the list. Moreover the smallest combination with c k as the ...
This concept is fundamental in Euclidean geometry and affine geometry, because the set of all affine combinations of a set of points forms the smallest affine space containing the points, exactly as the linear combinations of a set of vectors form their linear span. The affine combinations commute with any affine transformation T in the sense that