Search results
Results from the WOW.Com Content Network
Methanol and its vapours are flammable. Moderately toxic for small animals – Highly toxic to large animals and humans (in high concentrations) – May be fatal/lethal or cause blindness and damage to the liver, kidneys, and heart if swallowed – Toxicity effects from repeated over exposure have an accumulative effect on the central nervous system, especially the optic nerve – Symptoms may ...
Solid properties Std enthalpy change of formation, Δ f H o solid? kJ/mol Standard molar entropy, S o solid? J/(mol K) Heat capacity, c p? J/(mol K) Liquid properties Std enthalpy change of formation, Δ f H o liquid: −238.4 kJ/mol Standard molar entropy, S o liquid: 127.2 J/(mol K) Enthalpy of combustion Δ c H o: −715.0 kJ/mol Heat ...
[3] [4] Alcohols range from the simple, like methanol and ethanol, to complex, like sugars and cholesterol. The presence of an OH group strongly modifies the properties of hydrocarbons, conferring hydrophilic (water-loving) properties. The OH group provides a site at which many reactions can occur.
In the technical terms of physical chemistry, the minimum freezing point of a water-salt mixture is −21.12 °C (−6.02 °F) for 23.31 wt% of salt. Freezing near this concentration is however so slow that the eutectic point of −22.4 °C (−8.3 °F) can be reached with about 25 wt% of salt.
Sodium methoxide is prepared by treating methanol with sodium: 2 Na + 2 CH 3 OH → 2 CH 3 ONa + H 2. The reaction is so exothermic that ignition is possible. The resulting solution, which is colorless, is often used as a source of sodium methoxide, but the pure material can be isolated by evaporation followed by heating to remove residual methanol.
Salts form upon evaporation of their solutions. [9] Once the solution is supersaturated and the solid compound nucleates. [9] This process occurs widely in nature and is the means of formation of the evaporite minerals. [10] Insoluble salts can be precipitated by mixing two solutions, one with the cation and one with the anion in it.
The physical properties of ethanol stem primarily from the presence of its hydroxyl group and the shortness of its carbon chain. Ethanol's hydroxyl group is able to participate in hydrogen bonding, rendering it more viscous and less volatile than less polar organic compounds of similar molecular weight, such as propane .
Methoxymethanol forms spontaneously when a water solution of formaldehyde and methanol are mixed. [3] [1] or when formaldehyde is bubbled through methanol. [4] In space methoxymethanol can form when methanol radicals (CH 2 OH or CH 3 O) react. These are radiolysis products derived when ultraviolet light or cosmic rays hit frozen methanol. [3]