Search results
Results from the WOW.Com Content Network
Molisch test (using α-napthol) indicating a positive result (see purple ring). Molisch's test is a sensitive chemical test, named after Austrian botanist Hans Molisch, for the presence of carbohydrates, based on the dehydration of the carbohydrate by sulfuric acid or hydrochloric acid to produce an aldehyde, which condenses with two molecules of a phenol (usually α-naphthol, though other ...
The aniline acetate test is a chemical test for the presence of certain carbohydrates, in which they are converted to furfural with hydrochloric acid, which reacts with aniline acetate to produce a bright pink color. Pentoses give a strong reaction, and hexoses give a much weaker reaction.
An example of a positive Seliwanoff’s test. Seliwanoff’s test is a chemical test which distinguishes between aldose and ketose sugars. If the sugar contains a ketone group, it is a ketose. If a sugar contains an aldehyde group, it is an aldose. This test relies on the principle that, when heated, ketoses are more rapidly dehydrated than ...
The glucose tolerance test was first described in 1923 by Jerome W. Conn. [4]The test was based on the previous work in 1913 by A. T. B. Jacobson in determining that carbohydrate ingestion results in blood glucose fluctuations, [5] and the premise (named the Staub-Traugott Phenomenon after its first observers H. Staub in 1921 and K. Traugott in 1922) that a normal patient fed glucose will ...
Generally, Benedict's test detects the presence of aldehyde groups, alpha-hydroxy-ketones, and hemiacetals, including those that occur in certain ketoses. In example, although the ketose fructose is not strictly a reducing sugar, it is an alpha-hydroxy-ketone which results to a positive test because the base component of Benedict converts it ...
Osazone formation was developed by Emil Fischer, [3] who used the reaction as a test to identify monosaccharides. The formation of a pair of hydrazone functionalities involves both oxidation and condensation reactions. [4] Since the reaction requires a free carbonyl group, only "reducing sugars" participate.
It was developed in 1953 by Hugh and Leifson to be utilized in microbiology to determine the way a microorganism metabolizes a carbohydrate such as glucose (dextrose). [1] OF-glucose deeps contain glucose as a carbohydrate, peptones, bromothymol blue indicator for Hugh-Leifson's OF medium or phenol red for King's OF medium, and 0.5% agar.
The sodium fusion test tests for the presence of nitrogen, sulfur, and halides in a sample; The Zerewitinoff determination tests for any acidic hydrogen; The Oddy test tests for acid, aldehydes, and sulfides; Gunzberg's test tests for the presence of hydrochloric acid; Kelling's test tests for the presence of lactic acid