Search results
Results from the WOW.Com Content Network
Marcus's method is a structural analysis used in the design of reinforced concrete slabs. The method was developed by Henri Marcus and described in 1938 in Die Theorie elastischer Gewebe und ihre Anwendung auf die Berechnung biegsamer Platten . [ 1 ]
Conventionally the term concrete refers only to concrete that is reinforced with iron or steel. However, other materials are often used to reinforce concrete e.g. organic and inorganic fibres, composites in different forms. While compared to its compressive strength, concrete is weak in tension. Thus adding reinforcement increases the strength ...
(2) The thermal expansion coefficients of concrete and steel are so close (1.0 × 10 −5 to 1.5 × 10 −5 for concrete and 1.2 × 10 −5 for steel) that the thermal stress-induced damage to the bond between the two components can be prevented. (3) Concrete can protect the embedded steel from corrosion and high-temperature induced softening.
Weight: W = V x concrete specific gravity = 2.7 m 3 x 24 kN/m 3 = 64.8 kN; Calculated casting bed suction Suction area: A = w x h = 6.0 m x 3.0 m = 18 m 2; Assuming 1.0 kN/m 2 is applied for oiled steel formwork; Suction force: S = A x 1.0 kN/m 2 = 18 x 1.0 = 18 kN; Applied loads at element lifting (sling angle and lateral tension)
Lift slab construction (also called the Youtz-Slick Method) is a method of constructing concrete buildings by casting the floor or roof slab on top of the previous slab and then raising (jacking) the slab up with hydraulic jacks. This method of construction allows for a large portion of the work to be completed at ground level, negating the ...
A one-way slab has moment-resisting reinforcement only in its short axis, and is used when the moment in the long axis is negligible. [23] Such designs include corrugated slabs and ribbed slabs. Non-reinforced slabs may also be considered one-way if they are supported on only two opposite sides (i.e. they are supported in one axis).
where the first term represents the load carried by the concrete and the second term represents the load carried by the steel. Because the yield strength of steel is an order of magnitude larger than that of concrete, a small addition of steel will greatly increase the strength of the column. [1]
Concrete has a very low coefficient of thermal expansion, and as it matures concrete shrinks. All concrete structures will crack to some extent, due to shrinkage and tension. Concrete which is subjected to long-duration forces is prone to creep. The density of concrete varies, but is around 2,400 kilograms per cubic metre (150 lb/cu ft). [1]