enow.com Web Search

  1. Ad

    related to: tangent and secant pythagorean identities

Search results

  1. Results from the WOW.Com Content Network
  2. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    The two identities + ⁡ = ⁡ + ⁡ = ⁡ are also called Pythagorean trigonometric identities. [1] If one leg of a right triangle has length 1, then the tangent of the angle adjacent to that leg is the length of the other leg, and the secant of the angle is the length of the hypotenuse.

  3. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function , and then simplifying the resulting integral with a trigonometric identity.

  4. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    The six trigonometric functions are defined for every real number, except, for some of them, for angles that differ from 0 by a multiple of the right angle (90°). Referring to the diagram at the right, the six trigonometric functions of θ are, for angles smaller than the right angle:

  5. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    Basis of trigonometry: if two right triangles have equal acute angles, they are similar, so their corresponding side lengths are proportional.. In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) [1] are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.

  6. Outline of trigonometry - Wikipedia

    en.wikipedia.org/wiki/Outline_of_trigonometry

    Trigonometric functions [ edit ] Sine , Cosine , Tangent (trigonometric function) , Cotangent , Secant (trigonometric function) , Cosecant – see Trigonometric function

  7. Inverse trigonometric functions - Wikipedia

    en.wikipedia.org/.../Inverse_trigonometric_functions

    Trigonometric functions of inverse trigonometric functions are tabulated below. A quick way to derive them is by considering the geometry of a right-angled triangle, with one side of length 1 and another side of length x , {\displaystyle x,} then applying the Pythagorean theorem and definitions of the trigonometric ratios.

  8. Mnemonics in trigonometry - Wikipedia

    en.wikipedia.org/wiki/Mnemonics_in_trigonometry

    Write the functions without "co" on the three left outer vertices (from top to bottom: sine, tangent, secant) Write the co-functions on the corresponding three right outer vertices (cosine, cotangent, cosecant) Starting at any vertex of the resulting hexagon: The starting vertex equals one over the opposite vertex.

  9. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    Scientific calculators have buttons for calculating the main trigonometric functions (sin, cos, tan, and sometimes cis and their inverses). [51] Most allow a choice of angle measurement methods: degrees, radians, and sometimes gradians. Most computer programming languages provide function libraries that include the trigonometric functions. [52]

  1. Ad

    related to: tangent and secant pythagorean identities