Search results
Results from the WOW.Com Content Network
Level of measurement or scale of measure is a classification that describes the nature of information within the values assigned to variables. [1] Psychologist Stanley Smith Stevens developed the best-known classification with four levels, or scales, of measurement: nominal, ordinal, interval, and ratio.
Because nominal categories cannot be numerically organized or ranked, members associated with a nominal group cannot be placed in an ordinal or ratio form. Nominal data is often compared to ordinal and ratio data to determine if individual data points influence the behavior of quantitatively driven datasets. [1] [4] For example, the effect of ...
Scaling of data: One of the properties of the tests is the scale of the data, which can be interval-based, ordinal or nominal. [3] Nominal scale is also known as categorical. [6] Interval scale is also known as numerical. [6] When categorical data has only two possibilities, it is called binary or dichotomous. [1]
The concept of data type is similar to the concept of level of measurement, but more specific. For example, count data requires a different distribution (e.g. a Poisson distribution or binomial distribution) than non-negative real-valued data require, but both fall under the same level of measurement (a ratio scale).
Ordinal data is a categorical, statistical data type where the variables have natural, ordered categories and the distances between the categories are not known. [1]: 2 These data exist on an ordinal scale, one of four levels of measurement described by S. S. Stevens in 1946.
Composite measure in statistics and research design refer to composite measures of variables, i.e. measurements based on multiple data items. [1] An example of a composite measure is an IQ test, which gives a single score based on a series of responses to various questions. Three common composite measures include:
The Guttman scale is related to Rasch measurement; specifically, Rasch models bring the Guttman approach within a probabilistic framework. Constant sum scale – a respondent is given a constant sum of money, script, credits, or points and asked to allocate these to various items (example : If one had 100 Yen to spend on food products, how much ...
The appropriate statistic depends on the level of measurement. For nominal variables, a frequency table and a listing of the mode(s) is sufficient. For ordinal variables the median can be calculated as a measure of central tendency and the range (and variations of it) as a measure of dispersion.